Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes basicity

SchifT s bases A -Arylimides, Ar-N = CR2, prepared by reaction of aromatic amines with aliphatic or aromatic aldehydes and ketones. They are crystalline, weakly basic compounds which give hydrochlorides in non-aqueous solvents. With dilute aqueous acids the parent amine and carbonyl compounds are regenerated. Reduction with sodium and alcohol gives... [Pg.353]

The industrial process for preparing the reagent usually permits a little hydrolysis to occur, and the product may contain a little free calcium hydroxide or basic chloride. It cannot therefore be employed for drying acids or acidic liquids. Calcium chloride combines with alcohols, phenols, amines, amino-acids, amides, ketones, and some aldehydes and esters, and thus cannot be used with these classes of compounds. [Pg.140]

Acetaldehyde (and other aldehydes containing at least one hydrogen atom in the a position) when treated with a small quantity of dilute sodium hydr oxide solution or other basic catalyst gives a good yield of aldol (p hydroxy-n-but3Taldehyde) (I), which readily loses water, either by heating the isolated aldol alone or with a trace of mineral acid, to form crotonaldehyde (II) ... [Pg.351]

In the strongly basic medium, the reactant is the phenoxide ion high nucleophilic activity at the ortho and para positions is provided through the electromeric shifts indicated. The above scheme indicates theorpara substitution is similar. The intermediate o-hydroxybenzal chloride anion (I) may react either with a hydroxide ion or with water to give the anion of salicyl-aldehyde (II), or with phenoxide ion or with phenol to give the anion of the diphenylacetal of salicylaldehyde (III). Both these anions are stable in basic solution. Upon acidification (III) is hydrolysed to salicylaldehyde and phenol this probably accounts for the recovery of much unreacted phenol from the reaction. [Pg.692]

The mechanism of the reaction, which is of the aldol type, involves the car-bonyl group of tlie aldehyde and an active methylene group of the anhydride the function of the basic catalyst B (acetate ion 0H3000 or triethylamine N(0,Hb)j) is to form the anion of the active hydrogen component, i.e., by the extraction of a proton from the anhydride ... [Pg.707]

This reaction involves the condensation of an aldehyde or ketone with an a-halo ester in the presence of a basic condensing agent (sodium ethoxlde, sodamide, finely divided sodium or potassium iert.-butoxide) to give a glycldio (or ap-epoxy) ester. Thus acetophenone and ethyl chloroacetate yield phenyl-methylglycidic ester (I) ... [Pg.906]

The selective intermolecular addition of two different ketones or aldehydes can sometimes be achieved without protection of the enol, because different carbonyl compounds behave differently. For example, attempts to condense acetaldehyde with benzophenone fail. Only self-condensation of acetaldehyde is observed, because the carbonyl group of benzophenone is not sufficiently electrophilic. With acetone instead of benzophenone only fi-hydroxyketones are formed in good yield, if the aldehyde is slowly added to the basic ketone solution. Aldols are not produced. This result can be generalized in the following way aldehydes have more reactive carbonyl groups than ketones, but enolates from ketones have a more nucleophilic carbon atom than enolates from aldehydes (G. Wittig, 1968). [Pg.56]

Except in the case of formaldehyde, the electrophilic character of carbon atom of an aliphatic aldehyde is not strong enough to allow its condensation on a CH3 reactive group. However, such a condensation can occur with an aromatic or pseudoaromatic substance such as benzal-dehyde or pyrroloaldehyde, and the of the resulting dimethine dyes have been used in this last case to obtain the basicity scale of various rings (16). [Pg.51]

The structural features especially the very polar nature of the carbonyl group point clearly to the kind of chemistry we will see for aldehydes and ketones in this chapter The partially positive carbon of C=0 has carbocation character and is electrophilic The planar arrangement of its bonds make this carbon relatively uncrowded and susceptible to attack by nucleophiles Oxygen is partially negative and weakly basic... [Pg.708]

Hydration of aldehydes and ketones is a rapid reaction quickly reaching equilibrium but faster in acid or base than in neutral solution Thus instead of a single mechanism for hydration we 11 look at two mechanisms one for basic and the other for acidic solution... [Pg.716]

Step 1 The aldehyde and its enolate are m equilibrium with each other m basic solution The enolate acts as a nucleophile and adds to the carbonyl group of the aldehyde ... [Pg.770]

Enolization (Sections 18 4 through 18 6) Aldehydes and ke tones having at least one a hydro gen exist in equilibrium with their enol forms The rate at which equilibrium is achieved is in creased by acidic or basic cata lysts The enol content of simple aldehydes and ketones is quite small p diketones however are extensively enolized... [Pg.782]

P carbon atom of an a 3 unsatu rated carbonyl compound is elec trophilic nucleophiles especially weakly basic ones yield the prod ucts of conjugate addition to a 3 unsaturated aldehydes and ketones... [Pg.783]

The carbon-nitrogen triple bond of nitriles is much less reactive toward nucleophilic addition than is the carbon-oxygen double bond of aldehydes and ketones Strongly basic nucleophiles such as Gngnard reagents however do react with nitriles in a reaction that IS of synthetic value... [Pg.871]

Formaldehyde polymers have been known for some time (1) and early investigations of formaldehyde polymerization contributed significantly to the development of several basic concepts of polymer science (2). Polymers of higher aUphatic homologues of formaldehyde are also well known (3) and frequently referred to as aldehyde polymers (4). Some have curious properties, but none are commercially important. [Pg.56]

Carbonyl deductions. The classical Wolff-Kishner reduction of ketones (qv) and aldehydes (qv) involves the intermediate formation of a hydrazone, which is then decomposed at high temperatures under basic conditions to give the methylene group, although sometimes alcohols may form (40). [Pg.277]

Other Borohydrides. Potassium borohydride was formerly used in color reversal development of photographic film and was preferred over sodium borohydride because of its much lower hygroscopicity. Because other borohydrides are made from sodium borohydride, they are correspondingly more expensive. Generally their reducing properties are not sufficiently different to warrant the added cost. Zinc borohydride [17611-70-0] Zn(BH 2> however, has found many appHcations in stereoselective reductions. It is less basic than NaBH, but is not commercially available owing to poor thermal stabihty. It is usually prepared on site in an ether solvent. Zinc borohydride was initially appHed to stereoselective ketone reductions, especially in prostaglandin syntheses (36), and later to aldehydes, acid haHdes, and esters (37). [Pg.304]

Oxidation. Oxidation of hydroxybenzaldehydes can result in the formation of a variety of compounds, depending on the reagents and conditions used. Replacement of the aldehyde function by a hydroxyl group results when 2- or 4-hydroxybenzaldehydes are treated with hydrogen peroxide in acidic (42) or basic (43) media pyrocatechol or hydroquinone are obtained, respectively. [Pg.505]

Acidic hydrolysis of these hydroxyaLkyl hydroperoxides yields carboxyUc acids, whereas basic hydrolysis regenerates the parent aldehyde, hydrogen peroxide, and often other products. When derived from either aldehydes or cycHc ketones, peroxides (1, X = OH, = H, R, = alkylene or... [Pg.113]

Acid hydrolysis of peroxides (4) and (5) generates carbonyl compounds (parent ketones or aldehydes) and hydrogen peroxide. Basic hydrolysis of cycHc diperoxides with a-hydrogen (those from aldehydes) yields carboxyHc acids (44) ... [Pg.116]

The peroxycarboxyhc acid can be generated m situ by autoxidation of aldehydes, either in the presence of anhydrides or an acyl chloride and a base, eg, sodium carbonate, or basic ion-exchange resins (44,187,188,210) ... [Pg.125]

PhenoHc resins are prepared by the reaction of phenol or substituted phenol with an aldehyde, especially formaldehyde, in the presence of an acidic or basic catalyst. Their thermosetting character and the exotherm associated with the reaction presented technical barriers to commercialization. In 1900, the first U.S. patent was granted for a phenoHc resin, using the resin in cast form as a substitute for hard mbber (10). [Pg.292]

Reactions with Aldehydes and Ketones. An important use for alkylphenols is ia phenol—formaldehyde resias. These resias are classified as resoles or aovolaks (see Phenolic resins). Resoles are produced whea oae or more moles of formaldehyde react with oae mole of pheaol uader basic catalysis. These resias are thermosets. Novolaks are thermoplastic resias formed whea an excess of phenol reacts with formaldehyde under acidic conditions. The acid protonates formaldehyde to generate the alkylating electrophile (17). [Pg.60]

The versatility of this reaction is extended to a variety of aldehydes. The bisphenol derived from 2,6-di-/ f2 -butylphenol and furfural, (25) where R = furfuryl (13), is also used as an antioxidant. The utility of the 3,5-di-/ f2 -butyl-4-hydroxyben2yl moiety is evident in stabili2ets of all types (14), and its effectiveness has spurred investigations of derivatives of hindered alkylphenols to achieve better stahi1i2ing quaUties. Another example is the Michael addition of 2,6-di-/ f2 -butyl phenol to methyl acrylate. This reaction is carried out under basic conditions and yields methyl... [Pg.61]

Diels-Alder reaction of 2-bromoacrolein and 5-[(ben2yloxy)meth5i]cyclopentadiene in the presence of 5 mol % of the catalyst (35) afforded the adduct (36) in 83—85% yield, 95 5 exo/endo ratio, and greater than 96 4 enantioselectivity. Treatment of the aldehyde (36) with aqueous hydroxylamine, led to oxime formation and bromide solvolysis. Tosylation and elimination to the cyanohydrin followed by basic hydrolysis gave (24). [Pg.159]

Treatment of (89) with lead tetraacetate generates the unstable open-ring aldehyde (90) which is quickly converted to a dimethylacetal (91). Following basic hydrolysis of the methyl ester and acetates, the acetal is cleaved with aqueous acid to produce TxB2. A number of other approaches, including one starting from the Corey aldehyde, have been described (58). [Pg.164]

The basic carbohydrate molecule possesses an aldehyde or ketone group and a hydroxyl group on every carbon atom except the one involved in the carbonyl group. As a result, carbohydrates are defined as aldehyde or ketone derivatives of polyhydroxy alcohols and their reaction products. A look at the formula for glucose shows that it contains hydrogen and oxygen atoms in the ratio in which they are found in water. The name carbohydrate... [Pg.473]

These reactions ate carried out in the presence of acidic and basic catalysts. The acid-cataly2ed addition of ethyl alcohol to acetylene or to a vinyl ether produces acetals (diethers of 1,1-dihydroxyethane). The acid-cataly2ed reaction of ethyl alcohol with an aldehyde or ketone also gives acetals. [Pg.402]


See other pages where Aldehydes basicity is mentioned: [Pg.123]    [Pg.302]    [Pg.1091]    [Pg.22]    [Pg.716]    [Pg.778]    [Pg.1082]    [Pg.346]    [Pg.134]    [Pg.470]    [Pg.473]    [Pg.550]    [Pg.287]    [Pg.13]    [Pg.487]    [Pg.239]    [Pg.439]    [Pg.476]    [Pg.376]    [Pg.412]    [Pg.167]   
See also in sourсe #XX -- [ Pg.17 , Pg.96 ]




SEARCH



Aldehydes basic principles

Hydration of an Aldehyde or Ketone in Basic Solution

© 2024 chempedia.info