Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Endo-exo ratio

Lewis acids can greatly effect the endo/exo ratio of IDA reactions especially when the olefin portion is E. The effects for Z-oIefins is much more subtle... [Pg.157]

In summary, it seems that for most Diels-Alder reactions secondary orbital interactions afford a satisfactory rationalisation of the endo-exo selectivity. However, since the endo-exo ratio is determined by small differences in transition state energies, the influence of other interactions, most often steric in origin and different for each particular reaction, is likely to be felt. The compact character of the Diels-Alder activated complex (the activation volume of the retro Diels-Alder reaction is negative) will attenuate these eflfects. The ideas of Sustmann" and Mattay ° provide an attractive alternative explanation, but, at the moment, lack the proper experimental foundation. [Pg.7]

In 1961 Berson et al. were the first to study systematically the effect of the solvent on the endo-exo selectivity of the Diels-Alder reaction . They interpreted the solvent dependence of the endo-exo ratio by consideririg the different polarities of the individual activated complexes involved. The endo activated complex is of higher polarity than the exo activated complex, because in the former the dipole moments of diene and dienophile are aligned, whereas in the latter they are pointing in... [Pg.10]

Table 2.10 shows the effect of substituents on the endo-exo ratio. Under homogeneous conditions there is hardly any substituent effect on the selectivity. Consequently the substituents must have equal effects on the Gibbs energies of the endo and the exo activated complex. [Pg.63]

In contrast, investigation of the effect of ligands on the endo-exo selectivity of the Diels-Alder reaction of 3.8c with 3.9 demonstrated that this selectivity is not significantly influenced by the presence of ligands. The effects of ethylenediamine, 2,2 -bipyridine, 1,10-phenanthroline, glycine, L-tryptophan and L-abrine have been studied. The endo-exo ratio observed for the copper(II)-catalysed reaction in the presence of these ligands never deviated more than 2% from the endo-exo ratio of 93-7 obtained for catalysis by copper aquo ion. [Pg.91]

In a typical experiment 105 mg (0.50 mmol) of 3.8c, dissolved in a minimal amount of ethanol, and 100 mg (1.50 mmol) of 3.9 were added to a solution of 1.21g (5 mmol) of Cu(N03)2 BH20 and 5 mmol of ligand in 500 ml of water in a 500 ml flask. -Amino-acid containing solutions required addition of one equivalent of sodium hydroxide. When necessary, the pH was adjusted to a value of 5 ( -amino acids) and 7.5 (amines). The flask was sealed carefully and the solution was stirred for 2A hours, followed by extraction with ether. After drying over sodium sulfate the ether was evaporated. Tire endo-exo ratios were determined from the H-NMR spectra of the product mixtures as described in Chapter 2. [Pg.103]

The Diels-Alder reaction provides us with a tool to probe its local reaction environment in the form of its endo-exo product ratio. Actually, even a solvent polarity parameter has been based on endo-exo ratios of Diels-Alder reactions of methyl acrylate with cyclopentadiene (see also section 1.2.3). Analogously we have determined the endo-exo ratio of the reaction between 5.1c and 5.2 in surfactant solution and in a mimber of different organic and acpieous media. These ratios are obtained from the H-NMR of the product mixtures, as has been described in Chapter 2. The results are summarised in Table 5.3, and clearly point towards a water-like environment for the Diels-Alder reaction in the presence of micelles, which is in line with literature observations. [Pg.137]

Endo-exo ratios of the micelle-catalysed reactions have been determined by adding 0.25 mmol of 5.1c and 0.5 mmol of 5.2 to a solution of 5 mmol of surfactant and 0.005 mmol of EDTA in 50 ml of water in carefully sealed 50 ml flasks. The solutions were stirred for 7 days at 26 C and subsequently freeze-dried. The SDS and CTAB containing reaction mixtures were stirred with 100 ml of ether. Filtration and evaporation of the ether afforded the crude product mixtures. Extraction of the Diels-Alder adducts from the freeze-dried reaction mixture containing C12E7 was performed by stirring with 50 ml of pentane. Cooling the solution to -18 C resulted in precipitation of the surfactant. Filtration and evaporation of the solvent afforded the adduct mixture. Endo-exo ratios... [Pg.155]

We have demonstrated that due to inhomogeneous distribution of both reaction partners in the micelles, the pseudophase model leads to erroneous estimates of the second-order rate Constantin the micellar pseudophase, so that conclusions regarding the medium of the reaction cannot be derived through this model. However, analysis of substituent effects and endo-exo ratios of the Diels-Alder adducts indicate that the reaction experiences a water-like medium. [Pg.178]

There are probably several factors which contribute to determining the endo exo ratio in any specific case. These include steric effects, dipole-dipole interactions, and London dispersion forces. MO interpretations emphasize secondary orbital interactions between the It orbitals on the dienophile substituent(s) and the developing 7t bond between C-2 and C-3 of the diene. There are quite a few exceptions to the Alder rule, and in most cases the preference for the endo isomer is relatively modest. For example, whereas cyclopentadiene reacts with methyl acrylate in decalin solution to give mainly the endo adduct (75%), the ratio is solvent-sensitive and ranges up to 90% endo in methanol. When a methyl substituent is added to the dienophile (methyl methacrylate), the exo product predominates. ... [Pg.638]

Several titanium(IV) complexes are efficient and reliable Lewis acid catalysts and they have been applied to numerous reactions, especially in combination with the so-called TADDOL (a, a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol) (22) ligands [53-55]. In the first study on normal electron-demand 1,3-dipolar cycloaddition reactions between nitrones and alkenes, which appeared in 1994, the catalytic reaction of a series of chiral TiCl2-TADDOLates on the reaction of nitrones 1 with al-kenoyloxazolidinones 19 was developed (Scheme 6.18) [56]. These substrates have turned out be the model system of choice for most studies on metal-catalyzed normal electron-demand 1,3-dipolar cycloaddition reactions of nitrones as it will appear from this chapter. When 10 mol% of the catalyst 23a was applied in the reaction depicted in Scheme 6.18 the reaction proceeded to give a yield of up to 94% ee after 20 h. The reaction led primarily to exo-21 and in the best case an endo/ exo ratio of 10 90 was obtained. The chiral information of the catalyst was transferred with a fair efficiency to the substrates as up to 60% ee of one of the isomers of exo3 was obtained [56]. [Pg.226]

P/Z equilibrium 233 enantioselectivity 216 endo 153 endo isomer 217 endo/exo ratio 303 endo/exo selectivity 217 mt-shikimic acid 30 ethyl vinyl ether 220 exo 153 exo-endo 303 exo-selective 13... [Pg.330]

Eee has used chloroaluminate(III) ionic liquids in the Diels-Alder reaction [36]. The endo. exo ratio rose from 5.25 to 19 on changing the composition of the ionic liquid from X(A1C13) = 0.48 to X(A1C13) = 0.51 (Scheme 5.1-16). The reaction works well, giving up to 95 % yield, but the moisture-sensitivity of these systems is a major disadvantage, the products being recovered by quenching the ionic liquid in water. [Pg.181]

A similar study performed by Welton and co-workers studied the rate and selec-tivities of the Diels-Alder reaction between cyclopentadiene and methyl acrylate in a number of neutral ionic liquids [44]. It was found that endo. exo ratios decreased slightly as the reaction proceeded, and were dependent on reagent concentration and ionic liquid type. Subsequently, they went on to demonstrate that the ionic liquids controlled the endo. exo ratios through a hydrogen bond (Lewis acid) interaction with the electron-withdrawing group of the dienophile. [Pg.183]

The intramolecular /zetero-Diels-Alder reactions of 4-O-protected acyl-nitroso compounds 81, generated in situ from hydroxamic acids 80 by periodate oxidation, were investigated under various conditions in order to obtain the best endo/exo ratio of adducts 82 and 83 [65h] (Table 4.15). The endo adducts are key intermediates for the synthesis of optically active swainsonine [66a] and pumiliotoxin [66b]. The use of CDs in aqueous medium improves the reaction yield and selectivity with respect to organic solvents. [Pg.171]

The micellar effect on the endo/exo diastereoselectivity of the reaction has also been investigated. The endo/exo ratio of the reaction of cyclopentadiene with methyl acrylate is affected little (compared to water) by the use of SDS and CTAB [73b], while a large enhancement was observed in SDS solution when n-butyl acrylate was the dienophile used [74]. The ratio of endo/exo products in the reaction of 1 with 113c is not affected by CTAB, SDS and C12E7 [72a]. [Pg.178]

The modest endo/exo ratio observed when the reaction was carried out in basic chloroaluminate ionic liquids is ascribable to the polarity of the medium, while the high diastereoselectivity found in the acidic mixture is due to the increase of Lewis/Bronsted acidity of the medium. The rates of the reactions performed in basic and acidic chloroaluminates ([EMIMJCl AlCh, [BPJCl AlCh) are seven times slower and ten times faster, respectively, than those observed when the reactions were carried out in water [57]. [Pg.281]

Scheme 5.7 Tuning endo exo ratios using scCOi density... Scheme 5.7 Tuning endo exo ratios using scCOi density...
The Diels-Alder reaction of /V-acryloyloxazolidinone catalyzed by Cu(f-Bu)BOX shows a reversal of stereoselectivity between 1-acetoxybutadiene and 1-acetoxy-3-methylbutadiene. The former gives a 85 15 endo exo ratio, whereas the latter is 27 73 endo. exo. Explain this reversal in terms of the transition stmcture model given on p. 509. [Pg.616]

Holt studied the Diels-Alder reaction in a mixture of water, 2-propanol, and toluene as microemulsions.33 The endo/exo ratio between the reaction of cyclopentadiene and methyl methacrylate was enhanced with increasing amount of water in the presence of a surfactant. [Pg.379]

Combined yields of isolated products, based on consumed 4 bTaken from H-NMR spectra of crude products endo/exo ratio refers to C02Me group d Yield of crude product, purity 95%... [Pg.24]

Without a large excess of 1,3-diene the formation of cis and trans-head-to-head dimer 100 competed. The composition of the reaction mixture depends on the reaction time. Endo/exo ratio for 97 dropped from 98 2 to 22 78 after 5 h heating at 190 °C. This equilibration probably takes place by a reversal of the [4 + 2] cycloaddition [27],... [Pg.26]

Sulfonamide derivatives of a-amino acids and the similar bissulfonamide derivatives of diamines can be used to prepare reactive Lewis acid complexes. Corey20 reported the Lewis acid (R,R)- or (5,5 )-complex 69, which can be employed at 10 mol% level to catalyze the Diels-Alder reaction of cyclopentadiene and imide. Reactions catalyzed by this complex give an endo.exo ratio of over 50 1, as well as a high ee (91%) at —78°C, and this can be further improved to 95% by carrying out the reaction at 90°C.20 The related aluminum complex 69b shows very similar reactivity at —78°C, with generally higher ee values, typically over 95%, for the reaction of cyclopentadiene derivatives with imide.20,21... [Pg.282]

Li et al.39 reported the hetero Diels-Alder reaction of alkyl-3-(t-butyldimethylsilyl) oxy-1,3-butadiene 95 with ethyl glyoxylate 96 in the presence of a salen-Co(II) catalyst 94 (2 mol%). Product 97 was obtained in 75% isolated yield with an endo. exo ratio >99 1. The enantiomeric excess of the endo-iorm was up to 52% (Scheme 5-30). [Pg.292]

Hetero-Diels-Alder-type cydoaddition reactions of the vinylallenes with aldehydes proceeded in the presence of BF3 OEt2 (l.lequiv.) at 0°C to give the adducts in a moderate endo exo ratio. The cydoaddition took place from the less hindered face of the vinylallene [168]. [Pg.796]

Ionic liquids are excellent solvents for the Diels-Alder reaction providing significant increases in rate and selectivity. Diels-Alder reactions conducted in chloroa-luminate ionic liquids show considerable promise. For example, the endo.exo ratio for the reaction between cyclopentadiene and methyl acrylate (Scheme 7.5) could be varied by changing the composition of the ionic liquid (see Chapter 4) [11]. Although a high yield was obtained, in order to extract the products it was necessary to quench the ionic liquid in water. This is a considerable disadvantage and for this reason neutral ionic liquids have been the focus of subsequent attention. [Pg.153]


See other pages where Endo-exo ratio is mentioned: [Pg.11]    [Pg.61]    [Pg.63]    [Pg.63]    [Pg.68]    [Pg.75]    [Pg.155]    [Pg.304]    [Pg.178]    [Pg.194]    [Pg.283]    [Pg.1079]    [Pg.106]    [Pg.145]    [Pg.146]    [Pg.223]    [Pg.479]    [Pg.408]    [Pg.320]    [Pg.312]    [Pg.728]    [Pg.325]    [Pg.402]    [Pg.151]   
See also in sourсe #XX -- [ Pg.151 , Pg.152 , Pg.153 , Pg.154 , Pg.155 ]

See also in sourсe #XX -- [ Pg.151 , Pg.152 , Pg.153 , Pg.154 , Pg.155 ]




SEARCH



© 2024 chempedia.info