Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol constant

Antacid Assess GI pain (duration, location, time of occurrence, relief with food, or caused by food or alcohol, constant or sporadic, worsened when lying down or bending over). [Pg.278]

Heating with 1% H2SO, (sealed tube) — al -I- isopropyl alcohol Constant boil mixt with w, b p 52 6, with 4% w Normal crude mixt IS 65% Irons + 3i°/oCis... [Pg.131]

The type of behavior shown by the ethanol-water system reaches an extreme in the case of higher-molecular-weight solutes of the polar-nonpolar type, such as, soaps and detergents [91]. As illustrated in Fig. Ul-9e, the decrease in surface tension now takes place at very low concentrations sometimes showing a point of abrupt change in slope in a y/C plot [92]. The surface tension becomes essentially constant beyond a certain concentration identified with micelle formation (see Section XIII-5). The lines in Fig. III-9e are fits to Eq. III-57. The authors combined this analysis with the Gibbs equation (Section III-SB) to obtain the surface excess of surfactant and an alcohol cosurfactant. [Pg.69]

As a guide to the probable occurrence of a constant-boiling mixture, it should be noted that such mixtures most frequently occur when one of the components contains an hydroxyl (— OH) group. Only aqueous and alcoholic mixtures therefore are likely to have a constant boiling-point. [Pg.7]

For ethyl alcohol, two volumes of dicycZohexyl are mixed with one volume of the alcohol, a thermometer is introduced, and the mixture heated until it becomes clear. The solution is then slowly cooled, with constant stirring, and the temperature is determined at which the opalescent solution suddenly becomes turbid so that the immersed portion of the mercury thread of the thermometer is no longer clearly visible. This is the C.S.T. The water content may then be evaluated by reference to the following table. [Pg.21]

Absolute ethyl alcohol. Ethyl alcohol of a high degree of purity is frequently required in preparative organic chemistry. For some purposes alcohol of ca. 99 -5 per cent, purity is satisfactory this grade may be purchased (the absolute alcohol of commerce), or it may be conveniently prepared by the dehydration of rectified spirit with quicklime. Rectified spirit is the constant boiling point mixture which ethyl alcohol forms with water, and usually contains 95 6 per cent, of alcohol by weight. Wherever the term rectified spirit is used in this book, approximately 95 per cent, ethyl alcohol is to be understood. [Pg.166]

Pure pyridine may be prepared from technical coal-tar pyridine in the following manner. The technical pyridine is first dried over solid sodium hydroxide, distilled through an efficient fractionating column, and the fraction, b.p. 114 116° collected. Four hundred ml. of the redistilled p)rridine are added to a reagent prepared by dissolving 340 g. of anhydrous zinc chloride in a mixture of 210 ml. of concentrated hydrochloric acid and 1 litre of absolute ethyl alcohol. A crystalline precipitate of an addition compound (probable composition 2C5H5N,ZnCl2,HCl ) separates and some heat is evolved. When cold, this is collected by suction filtration and washed with a little absolute ethyl alcohol. The yield is about 680 g. It is recrystaUised from absolute ethyl alcohol to a constant m.p. (151-8°). The base is liberated by the addition of excess of concentrated... [Pg.175]

Other mixtures which may be employed are carbon tetrachloride (b.p. 77°) and toluene (b.p. 110-111°) chloroform (b.p. 61°) and toluene methyl alcohol (b.p. 65°) and water (b.p. 100°). The last example is of interest because almost pure methyl alcohol may be isolated no constant boiling point mixture (or azeotropic mixture) is formed (compare ethyl alcohol and water, Sections 1,4 and 1,5). Attention is directed to the poisonous character of methyl alcohol the vapour should therefore not be inhaled. [Pg.232]

By slow distillation of the alcohol with constant boiling point (48 per cent.) hydrobromic acid, for example ... [Pg.270]

By treatment of the alcohol with a mixture of constant boiling point hydrobromic acid and concentrated sulphuric acid the presence of sulphuric acid results, as a rule, in more rapid reaction and improved 3delds. A typical example is ... [Pg.270]

The commercial constant boiling point alcohol, b.p. 80°/760 mm., containing 88 per cent, of tert..butyl alcohol, may be used 28-5 g. are required. [Pg.276]

Mix 40 g. (51 ml.) of isopropyl alcohol with 460 g. (310 ml.) of constant boiling point hydrobromic acid in a 500 ml. distilling flask, attach a double surface (or long Liebig) condenser and distil slowly (1-2 drops per second) until about half of the liquid has passed over. Separate the lower alkyl bromide layer (70 g.), and redistil the aqueous layer when a further 7 g. of the crude bromide will be obtained (1). Shake the crude bromide in a separatory funnel successively with an equal volume of concentrated hydrochloric acid (2), water, 5 per cent, sodium bicarbonate solution, and water, and dry with anhydrous calcium chloride. Distil from a 100 ml. flask the isopropyl bromide passes over constantly at 59°. The yield is 66 g. [Pg.277]

The residue in the flask may be mixed with the aqueous layer of the first distillate, 40 g. of isopropyl alcohol added, and the slow distillation repeated. The yield of crude isopropyl bromide in the second distillation is only slightly less than that obtained in the original preparation. Subsequently most of the residual hydrobromic acid may be recovered by distillation as the constant boiling point acid (126°). [Pg.277]

A further quantity of wopropyl iodide, only slightly less than that obtained in the first distillation, may be prepared by combining the residues in the distilling flask, adding 30 g. (38 ml.) of isopropyl alcohol, and repeating the distillation. Finally, the residues should be distUled and the 67 per cent, constant boiling point acid recovered. [Pg.285]

Methyl ethyl ketone. Use the apparatus of Fig. Ill, 61, 1 but with a 500 ml. round-bottomed flask. Place 40 g. (50 ml.) of see. butyl alcohol, 100 ml. of water and a few fragments of porous porcelain in the flask. Dissolve 100 g. of sodium dichromate dihydrate in 125 ml. of water in a beaker and add very slowly and with constant sturing 80 ml. of concentrated sulphuric acid allow to cool, and transfer the resulting solution to the dropping funnel. Heat the flask on a wire gauze or in an air bath until the alcohol mixture commences to boil. Remove the flame and run in the dichromate solution slowly and at such a rate that the temperature... [Pg.336]

Into a 500 ml. round-bottomed flask, fitted with a reflux condenser, place 42 g. of potassium hydroxide pellets and 120 g. (152 ml.) of absolute ethyl alcohol. Heat under reflux for 1 hour. Allow to cool and decant the liquid from the residual solid into another dry 500 ml. flask add 57 g. (45 ml.) of A.R. carbon dtsulphide slowly and with constant shaking. Filter the resulting almost solid mass, after cooling in ice, on a sintered glass funnel at the pump, and wash it with two 25 ml. portions of ether (sp. gr. 0-720), followed by 25 ml. of anhydrous ether. Dry the potassium ethyl xanthate in a vacuum desiccator over silica gel. The yield is 74 g. If desired, it ma be recrystallised from absolute ethyl alcohol, but this is usually unneceasary. [Pg.499]

The apparatus required is similar to that described for Diphenylmelhane (Section IV,4). Place a mixture of 200 g. (230 ml.) of dry benzene and 40 g. (26 ml.) of dry chloroform (1) in the flask, and add 35 g. of anhydrous aluminium chloride in portions of about 6 g. at intervals of 5 minutes with constant shaking. The reaction sets in upon the addition of the aluminium chloride and the liquid boils with the evolution of hydrogen chloride. Complete the reaction by refluxing for 30 minutes on a water bath. When cold, pour the contents of the flask very cautiously on to 250 g. of crushed ice and 10 ml. of concentrated hydrochloric acid. Separate the upper benzene layer, dry it with anhydrous calcium chloride or magnesium sulphate, and remove the benzene in a 100 ml. Claisen flask (see Fig. II, 13, 4) at atmospheric pressure. Distil the remaining oil under reduced pressure use the apparatus shown in Fig. 11,19, 1, and collect the fraction b.p. 190-215°/10 mm. separately. This is crude triphenylmethane and solidifies on cooling. Recrystallise it from about four times its weight of ethyl alcohol (2) the triphenylmethane separates in needles and melts at 92°. The yield is 30 g. [Pg.515]

Suspend 1 g. (or 1 ml.) of the substance in 20 ml. of 5 per cent, sodium hydroxide solution in a well-corked boiling tube or small conical flask, and add 2 ml. of redistilled benzoyl chloride, ca. 0-5 ml. at a time, with constant shaking, and cooling in water (if necessary). Shake vigorously for 5-10 minutes until the odour of the benzoyl chloride has disappeared. Make sure that the mixture has an alkaline reaction. Filter oflF the solid benzoyl derivative, wash it with a little cold water, and recrystalHse it from alcohol or dilute alcohol. [Pg.652]

Treat 1 g. (1 ml.) of the amine with 4 mols of 10 per cent, sodium or potassium hydroxide solution (say, 20 ml,), and add 1 -5 mols (or 3 g. if the molecular weight is unknown) of benzenesulphonyl or p-toluenesulphonyl chloride in small portions with constant shaking. To remove the excess of acid chloride, either shake vigorously or warm gently. Acidify with dilute hydrochloric acid and filter off the sulphonamide. Recrystallise it from alcohol or dilute alcohol. [Pg.653]

In a 500 ml. wide-mouthed reagent bottle place a cold solution of 25 g. of sodium hydroxide in 250 ml. of water and 200 ml. of alcohol (1) equip the bottle with a mechanical stirrer and surround it with a bath of water. Maintain the temperature of the solution at 20-25°, stir vigorously and add one-half of a previously prepared mixture of 26-5 g. (25 -5 ml.) of purebenzaldehyde (Section IV,115) and 7 -3 g. (9-3 ml.) of A.R. acetone. A flocculent precipitate forms in 2-3 minutes. After 15 minutes add the remainder of the benzaldehyde - acetone mixture. Continue the stirring for a further 30 minutes. Filter at the pump and wash with cold water to eliminate the alkali as completely as possible. Dry the solid at room temperature upon filter paper to constant weight 27 g. of crude dibenzalacetone, m.p. 105-107°, are obtained. Recrystallise from hot ethyl acetate (2-5 ml. per gram) or from hot rectified spirit. The recovery of pure dibenzalacetone, m.p. 112°, is about 80 per cent. [Pg.717]

Azlactone of a-benzoylaminocinnamic acid. Place a mi.xture of 27 g. (26 ml.) of redistilled benzaldehyde, 45 g. of Mppuric acid (Section IV,54), 77 g. (71-5) ml. of acetic anhydride and 20-5 g. of anhydrous sodium acetate in a 500 ml. conical flask and heat on an electric hot plate with constant shaking. As soon as the mixture has liquefied completely, transfer the flask to a water bath and heat for 2 hours. Then add 100 ml. of alcohol slowly to the contents of the flask, allow the mixture to stand overnight, filter the crystalline product with suction, wash with two 25 ml. portions of ice-cold alcohol and then wash with two 25 ml. portions of boiling water dry at 100°. The yield of almost pure azlactone, m.p. 165-166°, is 40 g. Recrystallisation from benzene raises the m.p. to 167-168°. [Pg.910]

In a 1 litre round-bottomed flask, equipped with an air condenser, place a mixture of 44 g. of o-chlorobenzoic acid (Section IV,157) (1), 156 g. (153 ml.) of redistilled aniline, 41 g. of anhydrous potassium carbonate and 1 g. of cupric oxide. Reflux the mixture in an oil bath for 2 hours. Allow to cool. Remove the excess of aniline by steam distillation and add 20 g. of decolourising carbon to the brown residual solution. Boil the mixture for 15 minutes, and filter at the pump. Add the filtrate with stirring to a mixture of 30 ml. of concentrated hydrochloric acid and 60 ml. of water, and allow to cool. Filter off the precipitated acid with suction, and dry to constant weight upon filter paper in the air. The yield of iV-phenylanthranilic acid, m.p. 181-182° (capillary tube placed in preheated bath at 170°), is 50 g. This acid is pure enough for most purposes. It may be recrystaUised as follows dissolve 5 g. of the acid in either 25 ml. of alcohol or in 10 ml. of acetic acid, and add 5 ml. of hot water m.p. 182-183°. [Pg.991]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

For the HCI salt Do exactly as above except use 6N Hydrochloric Acid. 6N HCI may be produced by diluting 60.4mL of "Muriatic Acid" to lOOmL with distilled water. Evaporate the bubbler solution to dryness then add 15ml of water, lOmL 10% NaOH soln. and heat gently to a boil with constant motion until dense white fumes appear. This will remove the Ammonium Chloride. Remove from heat while stirring as it cools down. Pulverize the dry residue, then reflux with absolute Ethanol for several minutes. Filter the refluxed soln. on a heated Buchner or Hirsch funnel, then distill the alcohol off the filtrate until crystals just begin to form. Allow the soln. to cool naturally to room temperature, then cool further in an ice bath. Filter the solution on a chilled Buchner funnel with suction. The yield of Meth iamine Hydrochloride should be around 55% of the theoretical. [Pg.264]

Synthesis of (A) started with the combination of 2,4,6-trimethylphenol and allyl bromide to give the or/Ao-allyl dienone. Acid-catalyzed rearrangement and oxidative bydroboration yielded the dienone with a propanol group in porlactone ring were irons in the product as expected (see p. 275). Treatment with aqueous potassium hydroxide gave the epoxy acid, which formed a crystalline salt with (R)-l-(or-naphthyl)ethylamine. This was recrystallized to constant rotation. [Pg.319]

The first identified complexes of unsubstituted thiazole were described by Erlenmeyer and Schmid (461) they were obtained by dissolution in absolute alcohol of both thiazole and an anhydrous cobalt(II) salt (Table 1-62). Heating the a-CoCri 2Th complex in chloroform gives the 0 isomer, which on standirtg at room temperature reverses back to the a form. According to Hant2sch (462), these isomers correspond to a cis-trans isomerism. Several complexes of 2,2 -(183) and 4,4 -dithiazolyl (184) were also prepared and found similar to pyridyl analogs (185) (Table 1-63). Zn(II), Fe(II), Co(II), Ni(II) and Cu(II) chelates of 2.4-/>is(2-pyridyl)thiazole (186) and (2-pyridylamino)-4-(2-pyridy])thiazole (187) have been investigated. The formation constants for species MLr, and ML -" (L = 186 or 187) have been calculated from data obtained by potentiometric, spectrophotometric, and partition techniques. [Pg.127]


See other pages where Alcohol constant is mentioned: [Pg.228]    [Pg.228]    [Pg.42]    [Pg.201]    [Pg.270]    [Pg.169]    [Pg.170]    [Pg.239]    [Pg.281]    [Pg.311]    [Pg.348]    [Pg.383]    [Pg.452]    [Pg.485]    [Pg.543]    [Pg.580]    [Pg.874]    [Pg.932]    [Pg.965]    [Pg.967]    [Pg.1012]    [Pg.26]    [Pg.115]    [Pg.201]   
See also in sourсe #XX -- [ Pg.90 ]




SEARCH



Alcohol, acidity constants

Alcohol, acidity constants activities

Alcohol, acidity constants basic properties

Alcohol-water mixtures dielectric constant

Alcohol-water mixtures dissociation constants

Alcohols rate constants

Alkylations, with alcohols rate constants

Coupling constants alcohols

Ethyl alcohol dielectric constant

Methyl alcohol dielectric constant

Water-alcohol mixtures, acidity constant

© 2024 chempedia.info