Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption layers properties

Another illustration of how the SFA can be used to understand polyelectrolyte adsorption layer properties will consider chitosan, a polyelectrolyte that is very appealing for practical use due to its natural origin and non-toxicity [128], acceptance in food [128, 129], biodegradability and biocompatibility, [130] antibacterial and fungistatic activity [129, 131]. [Pg.40]

The most advanced summary of the importance of the adsorption layer properties on the behavior of an emulsion, i.e., its stability or breakdown, was given recently by Ivanov and Kralchevsky (24). In their review, Ivanov and Kralchevsky demonstrate the importance of the surfactant effect not only qualitatively but also give some general relationships. To evaluate the mass balance for a film under... [Pg.3]

According to the concepts, given in the paper [7], a significant difference between the values of yield stress of equiconcentrated dispersions of mono- and polydisperse polymers and the effect of molecular weight of monodisperse polymers on the value of yield stress is connected with the specific adsorption on the surface of filler particles of shorter molecules, so that for polydisperse polymers (irrespective of their average molecular weight) this is the layer of the same molecules. At the same time, upon a transition to a number of monodisperse polymers, properties of the adsorption layer become different. [Pg.79]

The observed complexity of the Se(IV) electrochemistry due to adsorption layers, formation of surface compounds, coupled chemical reactions, lack of electroactivity of reduction products, and other interrelated factors has been discussed extensively. Zuman and Somer [31] have provided a thorough literature-based review with almost 170 references on the complex polarographic and voltammetric behavior of Se(-i-IV) (selenous acid), including the acid-base properties, salt and complex formation, chemical reduction and reaction with organic and inorganic... [Pg.70]

Thermodynamic discussions of surface-layer properties rely on the assumption of adsorption equilibrium (i.e., on the assumption that for each component the chemical potential in the surface layer is equal to that in the bulk phase, = [ip). When... [Pg.165]

Fig. 4.16 provides an illustration of the adsorption of a neutral polymer, polyvinyl alcohol, on a polar surface, and the resulting effects on the double layer properties. Adsorption of anionic polymers on negative surfaces - especially in the presence of Ca2+ or Mg2+ which may act as coordinating links between the surface and functional groups of the polymer - is not uncommon (Tipping and Cooke, 1982). [Pg.123]

Double-layer properties in aqueous, propylene carbonate and formamide solutions have been studied at room temperature for liquid Ga-Pb alloy (0.06 atom % of Pb) [15], as a model of Pb electrode with renewable surface. The electrode behaves as an ideally polarizable electrode in a wide potential range, and its capacitance is intermediate between that of Ga and Hg electrodes and is independent of the solvent. This electrode is much less lipophilic than Ga. Adsorption of anions on this electrode increases in the sequence -BP4 = S042 < Gl < Br < r. [Pg.806]

In Part Four (Chapter eight) we focus on the interactions of mixed systems of surface-active biopolymers (proteins and polysaccharides) and surface-active lipids (surfactants/emulsifiers) at oil-water and air-water interfaces. We describe how these interactions affect mechanisms controlling the behaviour of colloidal systems containing mixed ingredients. We show how the properties of biopolymer-based adsorption layers are affected by an interplay of phenomena which include selfassociation, complexation, phase separation, and competitive displacement. [Pg.417]

Finally, another consequence of this situation is the danger of attributing to the surface layer properties which have been established for the bulk material. This applies in particular to semiconducting characteristics of a defect oxide. Thus, with zinc oxide, the surface layer may be nearly stoichiometric and poorly conducting as a result of oxygen adsorption or conversely may present quasimetallic properties after activation in vacuo, irrespective of the composition of the bulk material. [Pg.55]

The charge density, Volta potential, etc., are calculated for the diffuse double layer formed by adsorption of a strong 1 1 electrolyte from aqueous solution onto solid particles. The experimental isotherm can be resolved into individual isotherms without the common monolayer assumption. That for the electrolyte permits relating Guggenheim-Adam surface excess, double layer properties, and equilibrium concentrations. The ratio u0/T2N declines from two at zero potential toward unity with rising potential. Unity is closely reached near kT/e = 10 for spheres of 1000 A. radius but is still about 1.3 for plates. In dispersions of Sterling FTG in aqueous sodium ff-naphthalene sulfonate a maximum potential of kT/e = 7 (170 mv.) is reached at 4 X 10 3M electrolyte. The results are useful in interpretation of the stability of the dispersions. [Pg.153]

Our understanding of the influence of competitive adsorption on emulsion stability is less secure. Recent work has identified several marked differences between the adsorbed layer properties atair/water and oil/water interfaces (e.g., multilayer versus monolayer formation). Advancing our knowledge of the stabilization of emulsions by protein merits further investigation, since emulsions comprise a major sector of processed foods. If competitive adsorption of surfactants influences the stability of protein emulsions in a similar manner to foams, use of the strategies outlined above may be appropriate for controlling destabilization. [Pg.55]

Surfactants at Interfaces. Somewhat surprisingly, the successes described above in the in-situ studies of protein adsorption have not inspired extensive applications to the study of the adsorption of surfactants. The common materials used in the fabrication of IREs, thalliumbromoiodide, zinc selenide, germanium and silicon do, in fact, offer quite a range in adsorption substrate properties, and the potential of employing a thin layer of a substance as a modifier of the IRE surface which is presented to a surfactant solution has also been examined in the studies of proteins. Based on the appearance of the studies described below, and recent concerns about the kinetics of formation of self-assembled layers, (108) it seems likely that in-situ ATR studies of small molecules at solid - liquid interfaces ("wet" solids), will continue to expand in scope. [Pg.16]

In composite systems, 2H NMR is particularly suited to investigate interfacial properties. Indeed, isolated nuclei are observed, which potentially allows spatially selective information to be obtained. It has been used to investigate polymer chain mobility at the polymer-filler interface, mainly in filled silicon (in particular PDMS) networks. The chain mobility differs considerably at the polymer-filler interface, and this may be interpreted in terms of an adsorbed polymer layer at the filler surface. T1 relaxation measurements allowed to determine the fraction of chain units involved in the adsorption layer, or equivalently, the thickness of the layer [75, 76, 77]. The molecular mobility and the thickness of the adsorption layer are very sensitive to the type of filler surface [78]. [Pg.584]

It was shown that the stress-induced orientational order is larger in a filled network than in an unfilled one [78]. Two effects explain this observation first, adsorption of network chains on filler particles leads to an increase of the effective crosslink density, and secondly, the microscopic deformation ratio differs from the macroscopic one, since part of the volume is occupied by solid filler particles. An important question for understanding the elastic properties of filled elastomeric systems, is to know to what extent the adsorption layer is affected by an external stress. Tong-time elastic relaxation and/or non-linearity in the elastic behaviour (Mullins effect, Payne effect) may be related to this question [79]. Just above the melting temperature Tm, it has been shown that local chain mobility in the adsorption layer decreases under stress, which may allow some elastic energy to be dissipated, (i.e., to relax). This may provide a mechanism for the reinforcement of filled PDMS networks [78]. [Pg.584]

The characteristic effect of surfactants is their ability to adsorb onto surfaces and to modify the surface properties. Both at gas/liquid and at liquid/liquid interfaces, this leads to a reduction of the surface tension and the interfacial tension, respectively. Generally, nonionic surfactants have a lower surface tension than ionic surfactants for the same alkyl chain length and concentration. The reason for this is the repulsive interaction of ionic surfactants within the charged adsorption layer which leads to a lower surface coverage than for the non-ionic surfactants. In detergent formulations, this repulsive interaction can be reduced by the presence of electrolytes which compress the electrical double layer and therefore increase the adsorption density of the anionic surfactants. Beyond a certain concentration, termed the critical micelle concentration (cmc), the formation of thermodynamically stable micellar aggregates can be observed in the bulk phase. These micelles are thermodynamically stable and in equilibrium with the monomers in the solution. They are characteristic of the ability of surfactants to solubilise hydrophobic substances. [Pg.54]

It can be summarized that ellipsometric measurements proved the formation of a surfactant adsorption layer on the photoresist surface. At ceg- it is assumed to form a monolayer. To get more information about the adsorption layer and its influence on the surface properties of the photoresist, an electrokinetic characterization of unexposed and processed photoresist in solutions of the cationic surfactant was carried out. The zeta potential of the photoresist layers is given in Fig. 8 as a function of the surfactant concentration. The measurement was performed at pH = 6 in a background electrolyte (KC1) concentration of 10-5 M to ensure the minimum conductivity of the solution necessary for the measurement. [Pg.89]

The special properties of thin liquid films, in particular of foam films, involve studying various colloid-chemical aspects, such as kinetics of thinning and rupture of films, transition from CBF to NBF, isotherms of disjoining pressure, thermodynamic (equilibrium) properties, determination of the electrical parameters of surfactant adsorption layer at the liquid/gas... [Pg.88]

A completely different behaviour exhibit NBF from NaDoS solutions. They do not change their thickness with pa and Cei alterations. However, their properties depend on the composition of the initial surfactant solution (see 0(Cei) and ta(Cei) dependences in Section 3.4.1.1). The thickness of NBF determined from h(Cei) dependence is approximately equal to the doubled thickness of the adsorption layer as assumed by Perrin [318]. This is confirmed by NBF obtained from other surfactants. It should be bom in mind that the interferometric technique employed to measure film thickness gives directly the optical difference in the path of the beams reflected by the two film surfaces. When the thickness is calculated from optical measurements a refractive coefficient, being a function of film structure, should be chosen (see Sections 2.1.3 and 3.4.1). [Pg.216]


See other pages where Adsorption layers properties is mentioned: [Pg.128]    [Pg.193]    [Pg.360]    [Pg.3]    [Pg.128]    [Pg.193]    [Pg.360]    [Pg.3]    [Pg.162]    [Pg.466]    [Pg.22]    [Pg.270]    [Pg.276]    [Pg.238]    [Pg.283]    [Pg.277]    [Pg.26]    [Pg.962]    [Pg.983]    [Pg.313]    [Pg.9]    [Pg.142]    [Pg.308]    [Pg.412]    [Pg.203]    [Pg.193]    [Pg.260]    [Pg.82]    [Pg.345]    [Pg.657]    [Pg.38]    [Pg.322]    [Pg.137]    [Pg.226]    [Pg.227]    [Pg.233]   
See also in sourсe #XX -- [ Pg.226 , Pg.227 , Pg.228 , Pg.229 ]




SEARCH



Adsorption layer

Adsorption properties

Layer properties

Properties of the adsorption layer

Thermodynamics, adsorption interfacial layer properties

© 2024 chempedia.info