Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ADMET applications

Olefin metathesis (OM) has proven to be one of the most important advances in catalysis in recent years based on the application of this chemistry to the synthesis of polymers and biologically relevant molecules [1-10]. This unique transformation promotes chain and condensation polymerizations, namely ring opening metathesis polymerization and acyclic diene metathesis polymerization (ADMET). Applications of metathesis polymerization span many aspects of materials synthesis from cell-adhesion materials [11] to the synthesis of linear polyethylene with precisely spaced branches [12]. [Pg.193]

Acyclic triene metathesis (ATMET) polymerisation is a particular ADMET application useful in vegetable oils. ADMET can also be used for the polymerisation of triglycerides, offering the possibility to obtain branched polymers directly from plant oils without prior chemical modification, thereby helping to further minimise the environmental impact of snch materials. This type of polymerisation was termed ATMET with reference to monomer functionality [51]. [Pg.97]

We will focus on the development of ruthenium-based metathesis precatalysts with enhanced activity and applications to the metathesis of alkenes with nonstandard electronic properties. In the class of molybdenum complexes [7a,g,h] recent research was mainly directed to the development of homochi-ral precatalysts for enantioselective olefin metathesis. This aspect has recently been covered by Schrock and Hoveyda in a short review and will not be discussed here [8h]. In addition, several important special topics have recently been addressed by excellent reviews, e.g., the synthesis of medium-sized rings by RCM [8a], applications of olefin metathesis to carbohydrate chemistry [8b], cross metathesis [8c,d],enyne metathesis [8e,f], ring-rearrangement metathesis [8g], enantioselective metathesis [8h], and applications of metathesis in polymer chemistry (ADMET,ROMP) [8i,j]. Application of olefin metathesis to the total synthesis of complex natural products is covered in the contribution by Mulzer et al. in this volume. [Pg.228]

The next section describes the utilization of //PLC for different applications of interest in the pharmaceutical industry. The part discusses the instrumentation employed for these applications, followed by the results of detailed characterization studies. The next part focuses on particular applications, highlighting results from the high-throughput characterization of ADMET and physicochemical properties (e.g., solubility, purity, log P, drug release, etc.), separation-based assays (assay development and optimization, real-time enzyme kinetics, evaluation of substrate specificity, etc.), and sample preparation (e.g., high-throughput clean-up of complex samples prior to MS (FIA) analysis). [Pg.158]

The treatment of equivalent amounts of two different alkenes with a metathesis catalyst generally leads to the formation of complex product mixtures [925,926]. There are, however, several ways in which cross metathesis can be rendered synthetically useful. One example of an industrial application of cross metathesis is the ethenolysis of internal alkenes. In this process cyclic or linear olefins are treated with ethylene at 50 bar/20 80 °C in the presence of a heterogeneous metathesis catalyst. The reverse reaction of ADMET/RCM occurs, and terminal alkenes are obtained. [Pg.161]

Lead optimization Application of early ADMET predictive techniques, structure-activity relationships and medicinal chemistry testing of homologs... [Pg.19]

IX 1.0. Nous appellerons schema de Krull un schema qui admet un recouvrement par des ouverts affines, spectres d anneaux de Krull (Bourbaki, alg. com. chap. VII 1). Si A est un anneau de Krull, on sait (loc. cit.) que le localise de A par une partie multiplicative, 1 anneau des polynSmes A[T], et le normalise de A dans une extension algebrique finie du corps des fractions de A, sont des anneaux de Krull. II en resulte que si S est un schema de Krull, tout schema X lisse sur S est un schema de Krull de plus, les points de codi— mension 1 de X sont les points de codimension 1 des fibres maximales de X et les points maximaux des fibres de X au-dessus des points de codimension 1 de S. Proposition IX 1.1. Soient S un schema, X un S-schema lisse sur S, h fibres connexes, I un S-schema localement de type fini, e S —> X et 6 S — I. deux S-sections, f une S-application rationnelle de X dans I, U son domaine de definition. On suppose que pour tout point x de... [Pg.126]

Synthetic protein-like polymers containing amino acids find pharmaceutical and biological applications and display self-assembly properties [174], In this aspect, both ROMP and ADMET have been used as tools for the polymerization of amino acid-based monomers. Early ROMP examples date back to 1994 with the synthesis and ROMP of amino acid-derived homochiral norbomene monomers by Coles et al [175], The molybdenum complex [Mo(=CHCMe2Ph)(=NC6H3Pr,2-2,6)(OBu )2]... [Pg.36]

II. Product Summaries Simulations Plus develops simulation and predictive modeling software for in silico compound screening and for preclinical and clinical drug development in the area of Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET). The available applications include GastroPlus, ADMET Predictor, ADMET Modeler, DDDPlus, and MembranePlus. [Pg.229]

Unsaturated polymers can be produced by means of ring-opening metathesis polymerization (ROMP) of cyclic alkenes. These unique polymers can also be produced via intermolecular Acyclic Diene Metathesis (ADMET). Dienes can also react intramolecularly via Ring Closing Metathesis (RCM) to afford cyclic products. RCM is often applied to synthesis of compounds for fine chemical and pharmaceutical application. Generic examples of these reactions are shown in Figure 2. [Pg.202]

Olefin metathesis has quickly become one of the most widely used methods for mild carbon-carbon bond formation in organic synthesis [1,2]. With the development of highly active, fimctional group-tolerant catalysts, like Grubbs second generation catalyst ([Ru] ), metathesis has been successfully applied across many areas of research, and some reviews already exist that deal with metathesis catalysis and applications [1-5]. This review focuses on recent developments in acycUc diene metathesis (ADMET) polymerization chemistry and methodology that have been published over the past five years, starting with a short discussion on the history of olefin metathesis and ADMET polymerization. [Pg.2]

Near-quantitative conversion of monomer to polymer is standard in these polymerizations, as few side reactions occur other than a small amount of cychc formation common in all polycondensation chemistry [41]. ADMET depolymerization also occurs when unsaturated olefins are exposed to pressures of ethylene gas [42,43]. In this case, the equilibriiun nature of metathesis is shifted towards low molecular weight products under saturation with ethylene. Due to the high catalytic activity of [Ru] and the abihty of [Mo] and [Ru] to create exact structures, ADMET has proven a valuable tool for production of novel polymer structures for material applications as well as model copolymer systems to help elucidate fundamental structure property relationships [5]. [Pg.6]

ADMET polymerization has been used to integrate silicon into linear and network hydrocarbon polymers in an attempt to produce novel materials with enhanced thermal and mechanical stability. While ADMET has been used to produce copolymeric architectures unattainable through conventional methods, application of this polymerization to synthesis is feasible only if the silicon-based functionality does not inhibit metathesis. This research, initiated in the early 1990s by Wagener and colleagues, has shown that the silane and siloxane... [Pg.32]

Recent developments in ADMET polymerization and its use in materials preparation have been presented. Due to the mild nature of the polymerization and the ease of monomer synthesis, ADMET polymers have been incorporated into various materials and functionaUzed hydrocarbon polymers. Modeling industrial polymers has proven successful, and continues to be appUed in order to study polyethylene structure-property relationships. Ethylene copolymers have also been modeled with a wide range of comonomer contents and absolutely no branching. Increased metathesis catalyst activity and functional group tolerance has allowed polymer chemists to incorporate amino acids, peptides, and various chiral materials into metathesis polymers. Sihcon incorporation into hydrocarbon-based polymers has been achieved, and work continues toward the application of latent reactive ADMET polymers in low-temperature resistant coatings. [Pg.37]


See other pages where ADMET applications is mentioned: [Pg.192]    [Pg.179]    [Pg.192]    [Pg.179]    [Pg.598]    [Pg.13]    [Pg.575]    [Pg.576]    [Pg.315]    [Pg.498]    [Pg.507]    [Pg.762]    [Pg.328]    [Pg.20]    [Pg.27]    [Pg.12]    [Pg.198]    [Pg.157]    [Pg.176]    [Pg.191]    [Pg.202]    [Pg.64]    [Pg.350]    [Pg.359]    [Pg.407]    [Pg.141]    [Pg.40]    [Pg.194]    [Pg.216]    [Pg.260]    [Pg.20]    [Pg.330]    [Pg.2]    [Pg.15]    [Pg.25]    [Pg.32]    [Pg.44]   
See also in sourсe #XX -- [ Pg.202 ]




SEARCH



ADMET

Applications of ADMET

© 2024 chempedia.info