Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adhesion to cord

Rubber is frequently used as a composite with other solids, for example in tyres, belting and coated fabrics, or may be in contact with other solids during use. The testing of composite materials or products containing rubber is, in general, outside the scope of this book but certain tests which are usually considered to be rubber tests are included here. These are adhesion to metals, adhesion to fabrics, adhesion to cord, corrosion of metals and paint staining. [Pg.363]

Another market appHcation for naphthenic acid is the tire industry, where cobalt naphthenate is used as an adhesion promoter (see Adhesives Tire cords). Cobalt naphthenate improves the bonding of brass-plated steel cords to mbber, presumably by suppressing the de-zincification of brass (50). Its first reported use was in 1970 and the first patent for its use was issued in 1975 (51). About 900 t of cobalt naphthenate is used worldwide as an adhesion promoter, half of it in North America. The unit value fluctuates between 8.75—13.25 /kg because of the volatility of cobalt prices. Although it is the industry standard, the use of cobalt naphthenate is declining with the advent of more economical high metal-containing substitutes. [Pg.512]

Tire Cord. Melamine resins are also used to improve the adhesion of mbber to reinforcing cord in tires. Textile cord is normally coated with a latex dip solution composed of a vinylpyridine—styrene—butadiene latex mbber containing resorcinol—formaldehyde resin.. The dip coat is cured prior to use. The dip coat improves the adhesion of the textile cord to mbber. Further improvement in adhesion is provided by adding resorcinol and hexa(methoxymethyl) melamine [3089-11 -0] (HMMM) to the mbber compound which is in contact with the textile cord. The HMMM resin and resorcinol cross-link during mbber vulcanization and cure to form an interpenetrating polymer within the mbber matrix which strengthens or reinforces the mbber and increases adhesion to the textile cord. Brass-coated steel cord is also widely used in tires for reinforcement. Steel belts and bead wire are common apphcations. Again, HMMM resins and resorcinol [108-46-3] are used in the mbber compound which is in contact with the steel cord to reinforce the mbber and increase the adhesion of the mbber to the steel cord. This use of melamine resins is described in the patent Hterature (49). [Pg.331]

Insoluble Sulfur. In natural mbber compounds, insoluble sulfur is used for adhesion to brass-coated wire, a necessary component in steel-belted radial tires. The adhesion of mbber to the brass-plated steel cord during vulcanization improves with high sulfur levels ( 3.5%). Ordinary rhombic sulfur blooms at this dose level. Crystals of sulfur on the surface to be bonded destroy building tack and lead to premature failure of the tire. Rubber mixtures containing insoluble sulfur must be kept cool (<100°C) or the amorphous polymeric form converts to rhombic crystals. [Pg.224]

Nylon, an aUphatic polyamide, was introduced as a commercial tire cord in 1947 and grew in usage to - 5.4 billion kg/yr (- 2 billion Ib/yr) in the 1990s (10,11). Nylon-reinforced tires use nylon-6 poljmier (polycaprolactam) fibers as well as nylon-6,6 (poly(hexamethylenediainine adipamide)) fibers. Nylon tire cords are characterized by extremely good fatigue resistance in compression and good adhesion to most mbber compounds with simple RFL adhesives. [Pg.82]

Introduced successfully for tires in 1967, glass fibers had properties that made them very attractive for use in tires (5,8). The britdeness of glass fibers, however, imposed some limitations on the final tine cord properties because of the requirement that each fiber be individually coated with a mbbery adhesive to avoid interfilament damage during fabrication and use. This additional treatment step is introduced at the fiber manufacturing stage. For several years fiber glass was used extensively in bias-belted and radial tires, but was ultimately replaced by steel belts in radial tires. [Pg.83]

Standard Test Method for Adhesion Between Steel Tire Cords and Rubber. Steel cords are vulcanised into a block of mbber and the force necessary to pull the cords linearly out of the mbber is measured as adhesive force. ASTM method D2229-93a can be used for evaluating mbber compound performance with respect to adhesion to steel cord. The property measured by this test method indicates whether the adhesion of the steel cord to the mbber is greater than the cohesion of the mbber, ie, complete mbber coverage of the steel cord or less than the cohesion of mbber (lack of mbber coverage). [Pg.90]

Adhesion. Commercially available 1- or 2-coat adhesive systems produce mbber failure in bonds between ethylene—acryflc elastomer and metal (14). Adhesion to nylon, polyester, or aramid fiber cord or fabric is greatest when the cord or fabric have been treated with carboxylated nitrile mbber latex. [Pg.500]

A multilayer-type structure probably due to cords in the molten zone between single arc sprayed (0.25 MPa) Ni droplets and steel substrate were found in AES point depth profiles [2.158]. That particular arc spraying condition turned out to yield the best adhesion. Plasma-sprayed AI2O3 layers separated from pre-oxidized Ni Substrate had a micrometer-thick NiO layer on the substrate-sided face and micrometer-deep oxide interdiffusion [2.159]. In this work also, AES point depth profiling substantiated technological assumptions about adhesion mechanisms. [Pg.47]

Resorcinol formaldehyde latex (RFL) cord dips have only a limited application within the general rubber goods industry and for adhesion to be achieved with synthetic fibres it is necessary to use the systems developed by Bayer and Degussa. These systems are based upon a combination of resorcinol, a formaldehyde donor and a hydrated silica filler (commonly called the RFK system). This system is incorporated as dry ingredients into the rubber compound and is activated by the application of heat. [Pg.139]

Cords used for reinforcement of such products as drive belts, V-belts and hose require treatment with RFL to achieve the ultimate adhesion to the rubber compound. Although many simple systems can be built in house it can often be preferable to purchase a custom built unit. The dipping and drying units are usually built in tandem, with let-off and wind-up units attached. [Pg.178]

Kargin, Usmanov, and Aikhodzhaev (64) used a similar technique of ozonization to introduce hydroperoxide groups into cellulose substrates. They observed grafting of styrene to ozonized viscose tire cord even without the presence of any other initiating system imparting improved rubber-adhesion to the rayon tire cord. In a later report, Usmanov, Aikhodzhaev, and Azizov (65) described the grafting of acrylonitrile, methyl methacrylate, methylvinylpyridine, and of vinylacetate onto ozonized cellulose. [Pg.126]

The adhesion of cord, textile or metal, to rubber is a specialised measurement in that virtually all interest centres on tyres and to some extent belting. Most static tests consist essentially of measuring the force to pull a cord out of a block of rubber into which it has been vulcanised and it is apparent that the result is critically dependent on the efficiency with which the test piece was moulded. The measured force is also dependent on the amount that the rubber deforms during the test. [Pg.374]

ISO 4647, 1982. Determination of static adhesion to textile cord - H-pull test. [Pg.382]

Materials. Two types of standard tire cord obtained from Gen Corporation were used in this investigation polyester, 1300/3, and nylon 66, 1260/3. The rubber composition to which the adhesively dipped cords were bonded had the following composition in parts by weight styrene-butadiene rubber (SBR) 1502, 100 N330 carbon black, 50 zinc oxide, 5 stearic acid, 0.5 sulfur, 1.7 2-morpholinothio-benzothiazole, 2. Master batches were mixed 7 min in a 350-ml Brabender Plasticorder, and curatives were added on a cool two-roll mill. Cure characteristics at 155 °C were determined with an oscillating disc rheometer (ASTM D 2084). The time to reach 90% of the final cure state was 23 min, and the Shore A hardness of the final vulcanizate was approximately 60. [Pg.244]


See other pages where Adhesion to cord is mentioned: [Pg.374]    [Pg.374]    [Pg.761]    [Pg.768]    [Pg.374]    [Pg.374]    [Pg.761]    [Pg.768]    [Pg.17]    [Pg.260]    [Pg.82]    [Pg.84]    [Pg.85]    [Pg.89]    [Pg.571]    [Pg.386]    [Pg.387]    [Pg.626]    [Pg.920]    [Pg.15]    [Pg.17]    [Pg.260]    [Pg.190]    [Pg.160]    [Pg.382]    [Pg.382]    [Pg.199]    [Pg.82]    [Pg.84]    [Pg.85]    [Pg.89]    [Pg.488]    [Pg.242]    [Pg.252]   
See also in sourсe #XX -- [ Pg.375 ]




SEARCH



Cord adhesion

Cordes

Cords

© 2024 chempedia.info