Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adenosine triphosphate importance

Molybdate is also known as an inhibitor of the important enzyme ATP sulfurylase where ATP is adenosine triphosphate, which activates sulfate for participation in biosynthetic pathways (56). The tetrahedral molybdate dianion, MoO , substitutes for the tetrahedral sulfate dianion, SO , and leads to futile cycling of the enzyme and total inhibition of sulfate activation. Molybdate is also a co-effector in the receptor for steroids (qv) in mammalian systems, a biochemical finding that may also have physiological implications (57). [Pg.475]

Adenosine Triphosphate. Adenosine triphosphate [56-65-5] (ATP), hke adenosine, is an important intracellular... [Pg.525]

Adenosine triphosphate (ATP) Common energy-donating molecule in biochemical reactions. Also an important compound in transfer of phosphate groups. [Pg.602]

Today, bioluminescence reactions are used as indispensable analytical tools in various fields of science and technology. For example, the firefly bioluminescence system is universally used as a method of measuring ATP (adenosine triphosphate), a vital substance in living cells Ca2+-sensitive photoproteins, such as aequorin from a jellyfish, are widely utilized in monitoring the intracellular Ca2+ that regulates various important biological processes and certain analogues... [Pg.485]

In living cells adenosin triphosphate plays an important roll in the transfer of energy. [Pg.560]

The relative strengths of bonds are important for understanding the way that energy is used in bodies to power our brains and muscles. For instance, adenosine triphosphate, ATP (35), is found in ever)- living cell. The triphosphate part of this molecule is a chain of three phosphate groups. One of the phosphate groups is removed in a reaction with water. The P O bond in ATP requires only 276 kjmol-1 to break and the new P—O bond formed in H2P04 releases 350 kj-mol-1 when it forms. As a result, the conversion of ATP to adenosine diphosphate, ADP, in the reaction... [Pg.206]

Adenosine triphosphate (ATP) is an extremely important molecule in biological systems. Consult standard reference sources in your library to describe how this molecule is used in energy transfer to facilitate nonspontaneous processes necessary for life. [Pg.429]

Phosphate also plays a central role in the transmission and control of chemical energy within the cells primarily via the hydrolysis of the terminal phosphate ester bond of the adenosine triphosphate (ATP) molecule (Fig. 14-3b). In addition, phosphate is a necessary constituent of phospholipids, which are important components in cell membranes, and as mentioned before, of apatite, which forms structural body parts such as teeth and bones. It is not surprising, therefore, that the cycling of P is closely linked with biological processes. This connection is, in fact, inseparable as organisms cannot exist without P, and their existence controls, to a large extent, the natural distribution of P. [Pg.363]

Only a few years after the Miller-Urey experiment was published, J. Oro was able to synthesize one of the most important biomolecules, adenine. This purine derivative is not only a component of the nucleic acids, but as ATP, adenosine triphosphate (in combination with ribose and three phosphate residues), it plays a key role in the metabolism of all living creatures. The chemical formula of adenine is C5H5N5, or expressed in another way, (HCN)s. [Pg.92]

F. H. Westheimer (1987) has provided a detailed survey of the multifarious ways in which phosphorus derivatives function in living systems (Table 4.7). The particular importance of phosphorus becomes clear when we remember that the daily turnover of adenosine triphosphate (ATP) in the metabolic processes of each human being amounts to several kilograms Phosphate residues bond two nucleotides or deoxynucleotides in the form of a diester, thus making possible the formation of RNA and DNA the phosphate always contains an ionic moiety, the negative charge of which stabilizes the diester towards hydrolysis and prevents transfer of these molecules across the lipid membrane. [Pg.115]

Two important implications of the reactions described in Equations (5.1) and (5.2) are (i) that redox reactions play an important role in metabolic transformations, with the cofactors nicotinamide adenine dinucleotide (NAD+) acting as electron acceptor in catabolic pathways and nicotinamide adenine dinucleotide phosphate (NADPH) as electron donor in anabolism, and (ii) that energy must be produced by catabolism and used in biosyntheses (almost always in the form of adenosine triphosphate, ATP). [Pg.78]

Adenosine triphosphate (ATP) is one of the most important cofactors involved in many of the synthetic reactions going on within the cell. Its recent large scale in vitro enzymatic synthesis from adenosine and acetylphosphate is of particular interest. Three enzymes immobilized in polyacrylamide gel were used adenosine kinase, adenylate kinase and acetate kinase (lip. ... [Pg.205]

Similarly, specific catalysts called enzymes are important factors in determining what reactions occur at an appreciable rate in biological systems. For example, adenosine triphosphate is thermodynamically unstable in aqueous solution with respect to hydrolysis to adenosine diphosphate and inorganic phosphate. Yet this reaction proceeds very slowly in the absence of the specific enzyme adenosine triphosphatase. This combination of thermodynamic control of direction and enzyme control of rate makes possible the finely balanced system that is a hving cell. [Pg.5]

Mechanical Work. All cells exhibit motile and contractile properties. The remarkable thing about these activities of cells is that they are based on the direct coupling of chemical to mechanical action, in contrast to the heat engines that we have developed to perform our work for us. The mechanisms by which this coupling of chemical to mechanical processes takes place is not well understood, but the hydrolysis of adenosine triphosphate is known to be an important part of the molecular pathway. Although thermodynamic studies cannot provide information about the molecular steps involved, any mechanism that is proposed must be consistent with thermodynamic data [4]. [Pg.185]

Phosphate ion is a major participant in the biological energy cycle through the reactions of mono-, di-, and triphosphates, including one of the most important of these reactions, producing adenosine diphosphate from adenosine triphosphate (see structures in Section 2.3.1, Table 2.2) ... [Pg.192]

Note that equation 5.2 is irreversible and the product AMP will require two phosphorylation steps to reconstitute the high-energy adenosine triphosphate, ATP. Inositol 1,4,5-triphosphate is an important molecule in the cytosol, where it releases calcium ions from storage. It forms part of a series of inositol-phosphate species that mediate calcium ion concentrations inside and outside the cell. [Pg.193]

The allotropes and compounds of phosphorus have many important uses and are an essential commercial commodity. Phosphorus is essential to all living tissue, both plant and animal. It is the main element in the compound adenosine triphosphate (ATP), the main energy source for living things. [Pg.214]

The first step of this sequence, which is not unique to de novo purine nucleotide biosynthesis, is the synthesis of 5-phosphoribosylpyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate. Phosphoribosyl-pyrophosphate synthetase, the enzyme that catalyses this reaction [278], is under feedback control by adenosine triphosphate [279]. Cordycepin interferes with thede novo pathway [229, 280, 281), and cordycepin triphosphate inhibits the synthesis of PRPP in extracts from Ehrlich ascites tumour cells [282]. Formycin [283], probably as the triphosphate, 9-0-D-xylofuranosyladenine [157] triphosphate, and decoyinine (LXXlll) [284-286] (p. 89) also inhibit the synthesis of PRPP in tumour cells, and this is held to be the blockade most important to their cytotoxic action. It has been suggested but not established that tubercidin (triphosphate) may also be an inhibitor of this reaction [193]. [Pg.93]

The cell stores chemical energy in the form of energy-rich metabolites. The most important metabolite of this type is adenosine triphosphate (ATP), which drives a large number of energy-dependent reactions via energetic coupling (see p. 16). [Pg.124]

Adenosine triphosphate is utilized in portions of the cell other than the mitochondria and chloroplasts therefore, the utilization as well as the production of ATP is of importance to total adenylate status. As a result, it became important to consider total ATP content of plants. When detached pinto bean leaves were exposed to 1,0 yl/1 ozone for 30 min total ATP content of the leaf decreased (12), Since ozone altered leaf ATP content it could also alter the leaf s adenylate status we wished to determine if a correlation existed between alteration in adenylates and the change previously reported in photosynthesis and respiration. Since ATP is readily broken down by adenosine triphosphatases, a reliable method of extraction and quantitative method of ATP analysis was designed for the study (8),... [Pg.108]

The hydrolysis of adenosine triphosphate 14, ATP, to adenosine diphosphate 15,ADP,is of considerable chemical and biochemical importance since such processes catalyzed by numerous enzymes play a crucial role in... [Pg.10]


See other pages where Adenosine triphosphate importance is mentioned: [Pg.65]    [Pg.528]    [Pg.751]    [Pg.280]    [Pg.10]    [Pg.1027]    [Pg.175]    [Pg.136]    [Pg.131]    [Pg.16]    [Pg.943]    [Pg.287]    [Pg.154]    [Pg.123]    [Pg.345]    [Pg.389]    [Pg.535]    [Pg.414]    [Pg.8]    [Pg.278]    [Pg.112]    [Pg.122]    [Pg.319]    [Pg.133]    [Pg.65]    [Pg.117]    [Pg.943]    [Pg.202]    [Pg.138]    [Pg.156]   
See also in sourсe #XX -- [ Pg.158 ]

See also in sourсe #XX -- [ Pg.516 ]




SEARCH



Adenosin triphosphate

Adenosine triphosphate

© 2024 chempedia.info