Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen addition processes

Addition of Hydrogen Cyanide. At one time the predominant commercial route to acrylonitrile was the addition of hydrogen cyanide to acetylene. The reaction can be conducted in the Hquid (CuCl catalyst) or gas phase (basic catalyst at 400 to 600°C). This route has been completely replaced by the ammoxidation of propylene (SOHIO process) (see Acrylonitrile). [Pg.374]

Some slurry processes use continuous stirred tank reactors and relatively heavy solvents (57) these ate employed by such companies as Hoechst, Montedison, Mitsubishi, Dow, and Nissan. In the Hoechst process (Eig. 4), hexane is used as the diluent. Reactors usually operate at 80—90°C and a total pressure of 1—3 MPa (10—30 psi). The solvent, ethylene, catalyst components, and hydrogen are all continuously fed into the reactor. The residence time of catalyst particles in the reactor is two to three hours. The polymer slurry may be transferred into a smaller reactor for post-polymerization. In most cases, molecular weight of polymer is controlled by the addition of hydrogen to both reactors. After the slurry exits the second reactor, the total charge is separated by a centrifuge into a Hquid stream and soHd polymer. The solvent is then steam-stripped from wet polymer, purified, and returned to the main reactor the wet polymer is dried and pelletized. Variations of this process are widely used throughout the world. [Pg.384]

In the final step the dinitrile is formed from the anti-Markovrukov addition of hydrogen cyanide [74-90-8] at atmospheric pressure and 30—150°C in the hquid phase with a Ni(0) catalyst. The principal by-product, 2-methylglutaronitrile/4j5 j5 4-ti2-, when hydrogenated using a process similar to that for the conversion of ADN to hexamethylenediamine, produces 2-meth5i-l,5-pentanediamine or 2-methylpentamethylenediamine [15520-10-2] (MPMD), which is also used in the manufacture of polyamides as a comonomer. [Pg.232]

Simplified models for proteins are being used to predict their stmcture and the folding process. One is the lattice model where proteins are represented as self-avoiding flexible chains on lattices, and the lattice sites are occupied by the different residues (29). When only hydrophobic interactions are considered and the residues are either hydrophobic or hydrophilic, simulations have shown that, as in proteins, the stmctures with optimum energy are compact and few in number. An additional component, hydrogen bonding, has to be invoked to obtain stmctures similar to the secondary stmctures observed in nature (30). [Pg.215]

A substantial portion of fhe gas and vapors emitted to the atmosphere in appreciable quantity from anthropogenic sources tends to be relatively simple in chemical structure carbon dioxide, carbon monoxide, sulfur dioxide, and nitric oxide from combustion processes hydrogen sulfide, ammonia, hydrogen chloride, and hydrogen fluoride from industrial processes. The solvents and gasoline fractions that evaporate are alkanes, alkenes, and aromatics with relatively simple structures. In addition, more complex... [Pg.44]

The order of reactivity of the hydrogen halides is HI > HBr > HCl, and reactions of simple alkenes with HCl are quite slow. The studies that have been applied to determining mechanistic details of hydrogen halide addition to alkenes have focused on the kinetics and stereochemistry of the reaction and on the effect of added nucleophiles. The kinetic studies often reveal complex rate expressions which demonstrate that more than one process contributes to the overall reaction rate. For addition of hydrogen bromide or Itydrogen... [Pg.353]

A mercurinium ion has both similarities and differences as compared with the intermediates that have been described for other electrophilic additions. The proton that initiates acid-catalyzed addition processes is a hard acid and has no imshared electrons. It can form either a carbocation or a hydrogen-bridged cation. Either species is electron-deficient and highly reactive. [Pg.370]

Because the bromine adds to the less substituted carbon atom of the double bond, generating the more stable radical intermediate, the regioselectivity of radical-chain hydrobromination is opposite to that of ionic addition. The early work on the radical mechanism of addition of hydrogen bromide was undertaken to understand why Maikow-nikofF s rule was violated under certain circumstances. The cause was found to be conditions that initiated the radical-chain process, such as peroxide impurities or light. [Pg.708]

Chemistry of polychloroprene rubber. Polychloroprene elastomers are produced by free-radical emulsion polymerization of the 2-chloro-1,3-butadiene monomer. The monomer is prepared by either addition of hydrogen chloride to monovinyl acetylene or by the vapour phase chlorination of butadiene at 290-300°C. This latter process was developed in 1960 and produces a mixture of 3,4-dichlorobut-l-ene and 1,4-dichlorobut-2-ene, which has to be dehydrochlorinated with alkali to produce chloroprene. [Pg.590]

This process accounts for most of the observations relating to product stereochemistry, double bond isomerism, deuterium exchange and other features encountered in the hydrogenation and deuteration of olefins. 140-142,144 addition of hydrogen to the double bond proceeds in... [Pg.112]

With very electrophilic olefins, an alternative hydrogen fluoride addition process is often preferred This process, involving reaction of the olefin with fluoride ion in the presence of a proton donor, is applicable to certain perhalogen ated alkenes [/] and substrates with other electron attracting groups attached to the double bond [i5, 36] (equations 4 and 5)... [Pg.57]

The noncatalytic oxidation of propane in the vapor phase is nonselec-tive and produces a mixture of oxygenated products. Oxidation at temperatures below 400°C produces a mixture of aldehydes (acetaldehyde and formaldehyde) and alcohols (methyl and ethyl alcohols). At higher temperatures, propylene and ethylene are obtained in addition to hydrogen peroxide. Due to the nonselectivity of this reaction, separation of the products is complex, and the process is not industrially attractive. [Pg.171]

Hexamethylenediamine is now made by three different routes the original from adipic acid, the electrodimerization of acrylonitrile, and the addition of hydrogen cyanide to butadiene. Thus, the starting material can be cyclohexane, propylene, or butadiene. Currently, the cyclohexane-based route from adipic acid is the most costly and this process is being phased out. The butadiene route is patented by DuPont and requires hydrogen cyanide facilities. Recent new hexamethylenediamine plants, outside DuPont, are based on acrylonitrile from propylene, a readily available commodity. [Pg.136]

Addition of hydrogen sulfide in solution was found to enhance the rate of this process albeit the efficiencies were generally low, partly due to concomitant precipitation of elemental sulfur during the photolytic experiments. The effects of reaction temperature, light intensity, and pH of the electrolyte were studied, and the photo-catalytic mechanism was discussed with reference to the theory of charge transfer at photoexcited metal sulfide semiconductors. [Pg.270]

The addition of hydrogenated castor oil to a copolymer of acrylamide and sodium acrylate formulation will suspend the copolymer and retard the settling process [1657]. [Pg.228]

Addition of a strong acid snch as methanesnlfonic acid (MSA) to the reaction mixture has a positive impact on the reactivity, as shown in Figure 3.8. The induction time is shortened by 10 minutes and the reaction rate almost doubled. Due to the reaction rate increase from the acid addition, the catalyst loading could be lowered. In addition, the hydrogen pressnre conld be donbled to rednce the reaction time by half. However, improvements from addition of acid and pressure increase are not sufficient to make this process commercially viable because the catalyst loading and the TOF are significantly lower than the criteria listed in Table 3.n. Therefore, we initiated a search for catalysts more active than Et-DnPhos-Rh catalyst. [Pg.38]

Currently, worldwide production of aldehydes exceeds 7 million tons/year (1). Higher aldehydes are important intermediates in the synthesis of industrial solvents, biodegradable detergents, surfactants, lubricants, and other plasticizers. The process, called hydroformylation or more familiarly, the Oxo process, refers to the addition of hydrogen and the formyl group, CHO, across a double bond. Two possible isomers can be formed (linear or branched) and the linear isomer is the desired product for these applications. [Pg.243]


See other pages where Hydrogen addition processes is mentioned: [Pg.187]    [Pg.88]    [Pg.172]    [Pg.195]    [Pg.11]    [Pg.513]    [Pg.412]    [Pg.136]    [Pg.257]    [Pg.29]    [Pg.509]    [Pg.170]    [Pg.2377]    [Pg.27]    [Pg.712]    [Pg.22]    [Pg.116]    [Pg.112]    [Pg.394]    [Pg.499]    [Pg.977]    [Pg.1116]    [Pg.1116]    [Pg.113]    [Pg.407]    [Pg.34]    [Pg.87]    [Pg.370]    [Pg.1006]    [Pg.301]    [Pg.264]    [Pg.287]    [Pg.273]   
See also in sourсe #XX -- [ Pg.299 , Pg.300 , Pg.301 ]




SEARCH



Addition process

Addition, hydrogenation

Additives, hydrogenated

Hydrogen processes

Hydrogen processing

Hydrogenation process

Hydrogenative addition

Hydrogenative process

© 2024 chempedia.info