Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activity salt effect

The thickness of the equivalent layer of pure water t on the surface of a 3Af sodium chloride solution is about 1 A. Calculate the surface tension of this solution assuming that the surface tension of salt solutions varies linearly with concentration. Neglect activity coefficient effects. [Pg.94]

Furthermore, the number of diene - dienoplrile combinations that can be expected to undergo a Lewis-acid catalysed Diels-Alder reaction is limited. Studies by Wijnen leave little doubt that the rate of typical Diels-Alder reactions, where the dienophile is activated by one or more carbonyl functionalities, does not respond to the presence of Lewis acids in aqueous solution , at least not beyond the extent that is expected for non-specific interactions (salt effects). No coordination of the Lewis acid to the dienophile was observed in these cases, which is perhaps not surprising. Water is... [Pg.48]

As has been noted above, there is no gross change in the mechanism of nitration of PhNH3+ down to 82 % sulphuric acid. The increase in o- andp-substitution at lower acidities has been attributed differential salt effects upon nitration at the individual positions. The two sets of partial rate factors quoted for PhNH3+ in table 9.3 show the effect of the substituent on the Gibbs function of activation at the m- and -positions to be roughly equal for reaction in 98 % sulphuric acid, and about 28 % greater at the -position in 82 % sulphuric acid. ... [Pg.169]

Activators. Activators are chemicals that increase the rate of vulcanization by reacting first with the accelerators to form mbber soluble complexes. These complexes then react with the sulfur to achieve vulcanization. The most common activators are combinations of zinc oxide and stearic acid. Other metal oxides have been used for specific purposes, ie, lead, cadmium, etc, and other fatty acids used include lauric, oleic, and propionic acids. Soluble zinc salts of fatty acid such as zinc 2-ethyIhexanoate are also used, and these mbber-soluble activators are effective in natural mbber to produce low set, low creep compounds used in load-bearing appHcations. Weak amines and amino alcohols have also been used as activators in combination with the metal oxides. [Pg.237]

There is a third experimental design often used for studies in electrolyte solutions, particularly aqueous solutions. In this design the reaction rate is studied as a function of ionic strength, and a rate variation is called a salt effect. In Chapter 5 we derived this relationship between the observed rate constant k and the activity coefficients of reactants l YA, yB) and transition state (y ) ... [Pg.386]

An effect of ionic strength on as a consequence of effects on the activity coefficient ratio is called a primary salt effect. We will, in Section 8.3, consider this effect quantitatively. [Pg.386]

Anhydrous NaC102 crystallizes from aqueous solutions above 37.4° but below this temperature the trihydrate is obtained. The commercial product contains about 80% NaC102. The anhydrous salt forms colourless deliquescent crystals which decompose when heated to 175-200° the reaction is predominantly a disproportionation to C103 and Cl but about 5% of molecular O2 is also released (based on the C102 consumed). Neutral and alkaline aqueous solutions of NaC102 are stable at room temperature (despite their thermodynamic instability towards disproportionation as evidenced by the reduction potentials on p. 854). This is a kinetic activation-energy effect and, when the solutions are heated near to boiling, slow disproportionation occurs ... [Pg.861]

Thus, at equilibrium, aqueous solutions of mercury(I) salts will contain around 0.6% of mercury(II) and the rather finely balanced equilibrium is easily displaced. The presence of any reagent which reduces the activity (in effect the concentration) of Hg + more than that of Hg2 ", either by forming a less-soluble... [Pg.1214]

Salt effects in the above reaction were investigated extensively. They are negligible on the reaction rate but appreciable on the activation energy which increased by 1.3 to 2.2 kcal/mole for salt concentrations rising to 0.31JH. [Pg.293]

The salts content of soils may be markedly altered by man s activities. The effect of cathodic protection will be discussed later in this section. Fertiliser use, particularly the heavy doses used in lawn care, introduces many chemicals into the soil. Industrial wastes, salt brines from petroleum production, thawing salts on walks and roads, weed-killing salts at the base of metal structures, and many other situations could be cited as examples of alteration of the soil solution. In tidal areas or in soils near extensive salt deposits, depletion of fresh ground-water supplies has resulted in a flow of brackish or salty sea water into these soils, causing increased corrosion. [Pg.384]

It is important to note that the solubility product relation applies with sufficient accuracy for purposes of quantitative analysis only to saturated solutions of slightly soluble electrolytes and with small additions of other salts. In the presence of moderate concentrations of salts, the ionic concentration, and therefore the ionic strength of the solution, will increase. This will, in general, lower the activity coefficients of both ions, and consequently the ionic concentrations (and therefore the solubility) must increase in order to maintain the solubility product constant. This effect, which is most marked when the added electrolyte does not possess an ion in common with the sparingly soluble salt, is termed the salt effect. [Pg.25]

At low ionic strengths, Tm increases exponentially with ion activity. The effect of high concentrations of salts or miscible solvents depends on the influence they have on hydrogen-bonding and may increase or decrease Tm. In the case of xanthan gum, the value of Tm can be adjusted from ambient to over 200°C by the addition of appropriate salts. Table 7.2 presents Tm values for some industrial viscosifiers. [Pg.216]

It seemed to us that the concept of primary salt effect was worth consideration for the polyelectrolyte catalysis156 . According to Bronsted157 and Bjerrum1 s8 the rate constant of the reaction is accounted for in terms of the activated complex theory A + B X -> C + D, X is the activated complex, C and D denote the product. The second-order rate constant, k2, is given by... [Pg.173]

The special salt effect is a constant feature of the activation of substrates in cages subsequent to ET from electron-reservoir complexes. In the present case, the salt effect inhibits the C-H activation process [59], but in other cases, the result of the special effect can be favorable. For instance, when the reduction of a substrate is expected, one wishes to avoid the cage reaction with the sandwich. An example is the reduction of alkynes and of aldehydes or ketones [60], These reductions follow a pathway which is comparable to the one observed in the reaction with 02. In the absence of Na + PFg, coupling of the substrate with the sandwich is observed. Thus one equiv. Na+PFg is used to avoid this cage coupling and, in the presence of ethanol as a proton donor, hydrogenation is obtained (Scheme VII). [Pg.61]

We will first explore what salt effect is expected for k and k2, and then examine the general situation. It is convenient to proceed by defining the net activation process.15 This is the chemical equation for the hypothetical process in which the transition state is formed from the predominant forms of the reagents, and not from the reactive entities. For the two pathways implicit in Eq. (9-47), these are the net activation processes ... [Pg.210]

In many drug solutions, it is necessary to use buffer salts in order to maintain the formulation at the optimum pH. These buffer salts can affect the rate of drug degradation in a number of ways. First, a primary salt effect results because of the effect salts have on the activity coefficient of the reactants. At relatively low ionic strengths, the rate constant, k, is related to the ionic strength, p, according to... [Pg.165]

Equation 7.1.2 characterizes what is known as the primary salt effect (i.e. the influence of ionic strength on the reaction rate through the activity coefficients of the reactants and the activated complex). Much early work on ionic reactions is relatively useless because this effect was not understood. Now it is common practice in studies of ionic reactions to add a considerable... [Pg.218]

The secondary salt effect is important when the catalytically active ions are produced by the dissociation of a weak electrolyte. In solutions of weak acids and weak bases, added salts, even if they do not exert a common ion effect, can influence hydrogen and hydroxide ion concentrations through their influence on activity coefficients. [Pg.225]

Gordon, J.E., Thome, R.L. (1967) Salt effects on the activity coefficient of naphthalene in mixed aqueous electrolyte solutions. I. Mixtures of two salts. J. Phys. Chem. 71, 439CM-399. [Pg.905]

It is generally observed that the rate of reaction can be altered by the presence of non-reacting or inert ionic species in the solution. This effect is especially great for reactions between ions, where rate of reaction is effected even at low concentrations. The influence of a charged species on the rate of reaction is known as salt effect. The effects are classified as primary and secondary salt effects. The primary salt effect is the influence of electrolyte concentration on the activity coefficient and rate of reaction, whereas the secondary salt effect is the actual change in the concentration of the reacting ions resulting from the addition of electrolytes. Both effects are important in the study of ionic reactions in solutions. The primary salt effect is involved in non-catalytic reactions and has been considered here. The deviation from ideal behaviour can be expressed in terms of Bronsted-Bjerrum equation. [Pg.190]

In primary salt effect, addition of an electrolyte (salt) or variation of ionic strength affects the activity coefficients and hence the rate of reaction. However, in a reaction where H+ or OH ions produced from a weak acid or weak base act as catalyting agent, the addition of salt influences the concentration of H+ or OH ions. Since the rate of reaction depends upon the concentration of H+ or OH, it will be affected by the salt concentration. This phenomenon is known as secondary salt effect. [Pg.192]

Indeed, some relationships between AVf, AH, and AS have been found for enzyme reactions. In the works of Somero and collaborators, these relationships have been interpreted in terms of salt effects on hydration energetics in the activation process. [Pg.131]

Salt effects in kinetics are usually classified as primary or secondary, but there is much more to the subject than these special effects. The theoretical treatment of the primary salt effect leans heavily upon the transition state theory and the Debye-Hii ckel limiting law for activity coefficients. For a thermodynamic equilibrium constant one should strictly use activities a instead of concentrations (indicated by brackets). [Pg.136]

The secondary salt effect originates in the effect of salts upon equilibria that may be of importance to the rate, e.g., changing the activity of catalytically functioning species. [Pg.137]

There are, however, many specific and anomalous kinetic salt effects, especially at higher salt concentrations, the origin of which lies in the effects on nonelectrolyte reactant activity coefficients. This is often the most interesting effect for enzymes, because the charge on the substrate is frequently zero, making the product ZiZ also zero. The exact charge on the enzyme molecules can be difficult to determine if one is working at a pH removed from the isoelectric point of the enzyme. [Pg.137]

Surface-active crown ethers are distinctly differ from usual type of nonionics in salt effect on the aqueous properties, due to the selective complexing ability with cations depending on the ring size of the crown. As shown in Figure 3 (22), the cloud point of the crowns is selectively raised by the added salts. This indicates that the degree of cloud point increase is a measure of the crown-complex stability in water (23). [Pg.35]

Therefore, the presence of the electrolyte solute, LiPFe, added complexity to the thermal decomposition of the LiMn204-based cathode. Contrary to the salt effect found with the LiCo02 cathode, the onset temperature of exothermic activity as represented by SHR > 0.02 °C min decreased as the concentration of LiPFe increased. Apparently, LiCo02 and LiMn204 have fundamental differences in the way they react with solvent in the presence of salt. It seemed that the salt mainly contributes to an initial thermal instability, which increases with LiPFe-concentr ation. ... [Pg.122]


See other pages where Activity salt effect is mentioned: [Pg.217]    [Pg.459]    [Pg.175]    [Pg.48]    [Pg.62]    [Pg.109]    [Pg.121]    [Pg.133]    [Pg.337]    [Pg.274]    [Pg.225]    [Pg.226]    [Pg.119]    [Pg.655]    [Pg.308]    [Pg.146]    [Pg.101]    [Pg.1068]    [Pg.132]    [Pg.17]    [Pg.23]    [Pg.449]   
See also in sourсe #XX -- [ Pg.837 ]




SEARCH



Salt effect

Salting effects

© 2024 chempedia.info