Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activities 4+3 Cycloaddition

The prototypes of intra-solid reactions are the [2-1-2] photochemically activated cycloaddition reactions that constitute the basis of Schmidt s work on topochemical reactions [36]. It is now clear, however, that the topochemical postulate, though correct and of wide applicability, cannot account for many solid-state processes, in particular those implying high molecular or ionic mo-... [Pg.82]

Toda et al. reported that the topotactic and enantioselective photodimerization of coumarin and thiocoumarin takes place in single crystals without significant molecular rearrangements [49]. Molecular motion needs to be called upon to explain the photochemically activated cycloaddition reaction of 2-benzyl-5-benzylidenecyclopentanone. The dimer molecules, once formed, move smoothly in the reactant crystal to form the product crystal [50]. Harris et al. investigated the reactivity of 10-hydroxy-10,9-boroxophenanthrene in the solid state and the mechanism of the solid-state reaction was characterized by both X-ray diffraction and thermal analysis [51]. It was demonstrated that the solution chemistry of 10-hydroxy-10,9-boroxophenanthrene is different from that in the solid state, where it undergoes dimerization and dehydration to form a monohydride derivative. [Pg.84]

From the 1980s on, many efforts were directed toward asymmetric induction of nitrile oxide cycloadditions to give pure (dia)stereoisomeric isoxazolines, and acyclic products derived from them (17,18,20-23). The need to obtain optically active cycloaddition products for use in the synthesis of natural products was first served by using chiral olefins, relying on 1,2-asymmetric induction, and then with optically active aldehydes or nitro compounds for the nitrile oxide part. In the latter case, insufficient induction occurs using chiral nitrile oxides, a problem still unsolved today. Finally, in the last 5 years, the first cases of successful asymmetric catalysis were found (29), which will certainly constitute a major area of study in the coming decade. [Pg.363]

The thermally activated cycloaddition to nitriles was originally performed by heating the reaction mixture to about 100 °C. However, more recent publications also describe cycloaddition reactions without catalyst which proceed in... [Pg.50]

Keywords C-C activation Cycloaddition Cyclopropane Transition metal... [Pg.195]

Chu J, Han X, Kefalidis CE, et al. Lewis acid tri ered reactivity of a Lewis base stabilized scandium-terminal imido complex C—H bond activation, cycloaddition, and dehydrofluorination. J m Chem Soc. 2014 136 10894-10897. [Pg.70]

Apart from the thoroughly studied aqueous Diels-Alder reaction, a limited number of other transformations have been reported to benefit considerably from the use of water. These include the aldol condensation , the benzoin condensation , the Baylis-Hillman reaction (tertiary-amine catalysed coupling of aldehydes with acrylic acid derivatives) and pericyclic reactions like the 1,3-dipolar cycloaddition and the Qaisen rearrangement (see below). These reactions have one thing in common a negative volume of activation. This observation has tempted many authors to propose hydrophobic effects as primary cause of ftie observed rate enhancements. [Pg.27]

The simplest of all Diels-Alder reactions cycloaddition of ethylene to 1 3 butadi ene does not proceed readily It has a high activation energy and a low reaction rate Substituents such as C=0 or C=N however when directly attached to the double bond of the dienophile increase its reactivity and compounds of this type give high yields of Diels-Alder adducts at modest temperatures... [Pg.409]

Figure 10 12 shows the interaction between the HOMO of one ethylene molecule and the LUMO of another In particular notice that two of the carbons that are to become ct bonded to each other m the product experience an antibondmg interaction during the cycloaddition process This raises the activation energy for cycloaddition and leads the reaction to be classified as a symmetry forbidden reaction Reaction were it to occur would take place slowly and by a mechanism m which the two new ct bonds are formed m separate steps rather than by way of a concerted process involving a sm gle transition state... [Pg.415]

The reaction of dihalocarbenes with isoprene yields exclusively the 1,2- (or 3,4-) addition product, eg, dichlorocarbene CI2C and isoprene react to give l,l-dichloro-2-methyl-2-vinylcyclopropane (63). The evidence for the presence of any 1,4 or much 3,4 addition is inconclusive (64). The cycloaddition reaction of l,l-dichloro-2,2-difluoroethylene to isoprene yields 1,2- and 3,4-cycloaddition products in a ratio of 5.4 1 (65). The main product is l,l-dichloro-2,2-difluoro-3-isopropenylcyclobutane, and the side product is l,l-dichloro-2,2-difluoro-3-methyl-3-vinylcyclobutane. When the dichlorocarbene is generated from CHCl plus aqueous base with a tertiary amine as a phase-transfer catalyst, the addition has a high selectivity that increases (for a series of diolefins) with a decrease in activity (66) (see Catalysis, phase-TRANSFEr). For isoprene, both mono-(l,2-) and diadducts (1,2- and 3,4-) could be obtained in various ratios depending on which amine is used. [Pg.465]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

Dipolarophiles utilized in these cycloadditions leading to five-membered heterocycles contain either double or triple bonds between two carbon atoms, a carbon atom and a heteroatom, or two heteroatoms. These are shown in Scheme 9 listed in approximate order of decreasing activity from left to right. Small rings containing a double bond (either C=C or C=N) are also effective dipolarophiles, but these result in six- and seven-membered ring systems. [Pg.143]

The two major methods of preparation are the cycloaddition of nitrile oxides to alkenes and the reaction of a,/3-unsaturated ketones with hydroxylamines. Additional methods include reaction of /3-haloketones and hydroxylamine, the reaction of ylides with nitrile oxides by activation of alkyl nitro compounds from isoxazoline AT-oxides (methoxides, etc.) and miscellaneous syntheses (62HC(i7)i). [Pg.88]

Doubt (75ZN(B)822) has been cast on a number of claims for the formation of 2-azetin-4-ones from cycloaddition of activated isocyanates to acetylenes (70TL119). The simple 2-azetin-4-one (246) was not isolated or even detected directly at -50 °C in the photofragmentation of compound (245), but indirect evidence for its formation was the isolation of adducts (248 X = MeO, MeNH) in the presence of methanol or methylamine (75TL1335). The most convincing evidence for an isolable 2-azetin-4-one involves treatment of the... [Pg.277]

Benzo[6]thiophene, 4-N-methylcarbamoyl-biological activity, 4, 913 Benzo[6]thiophene, 2-methyl-3-vinyl-cycloaddition reactions, 4, 795 Benzo[fc]thiophene, 2-( 1 -naphthyl)-synthesis, 4, 915 Benzo[6]thiophene, 2-nitro-reduction, 4, 815 synthesis, 4, 923 Benzo[6]thiophene, 3-nitro-cycloaddition reactions, 4, 789 Benzo[6]thiophene, 4-nitro-synthesis, 4, 923 Benzo[6]thiophene, 5-nitro-synthesis, 4, 923... [Pg.560]

Isothiazole-4,5-dicarboxylic acid, 3-phenyl-dimethyl ester synthesis, S, 150 Isothiazole-5-glyoxylic acid ethyl ester reduction, 6, 156 Isothiazole-4-mercurioacetate reactions, 6, 164 Isothiazole-5-mercurioacetate reactions, 6, 164 Isothiazoles, 6, I3I-I75 acidity, 6, 141 alkylation, 6, 148 aromaticity, S, 32 6, 144-145 basicity, 6, I4I biological activity, 6, 175 boiling points, 6, I43-I44, 144 bond fixation, 6, 145 bond orders, 6, I32-I34 calculated, 6, 133 bromination, S, 58 6, 147 charge densities, 6, 132-134 cycloaddition reactions, 6, 152 desulfurization, S, 75 6, 152 deuteration, S, 70... [Pg.683]

DIELS - ALDER Cyclohexene synthesis A 2 Thermal cycloaddition between a diene and an activated alkene or alkyrte, sometimes catalyzed by Lewis acids. [Pg.95]

The complementary relationship between thermal and photochemical reactions can be illustrated by considering some of the same reaction types discussed in Chapter 11 and applying orbital symmetry considerations to the photochemical mode of reaction. The case of [2ti + 2ti] cycloaddition of two alkenes can serve as an example. This reaction was classified as a forbidden thermal reaction (Section 11.3) The correlation diagram for cycloaddition of two ethylene molecules (Fig. 13.2) shows that the ground-state molecules would lead to an excited state of cyclobutane and that the cycloaddition would therefore involve a prohibitive thermal activation energy. [Pg.747]

The behavior of strained,/Zuorimiret/ methylenecyelopropanes depends upon the position and level of fluorination [34], l-(Difluoromethylene)cyclopropane is much like tetrafluoroethylene in its preference for [2+2] cycloaddition (equation 37), but Its 2,2-difluoro isomer favors [4+2] cycloadditions (equation 38). Perfluoromethylenecyclopropane is an exceptionally reactive dienophile but does not undergo [2+2] cycloadditions, possibly because of stenc reasons [34, 45] Cycloadditions involving most possible combinations of simple fluoroalkenes and alkenes or alkynes have been tried [85], but kinetic activation enthalpies (A/f j for only the dimerizations of tetrafluoroethylene (22 6-23 5 kcal/mol), chlorotri-fluoroethylene (23 6 kcal/mol), and perfluoropropene (31.6 kcal/mol) and the cycloaddition between chlorotnfluoroethylene and perfluoropropene (25.5 kcal/mol) have been determined accurately [97, 98] Some cycloadditions involving more functionalized alkenes are listed in Table 5 [99. 100, 101, 102, 103]... [Pg.780]

Although cyclizations of fluonnated substrates to form five-membered rings were only rarely encountered in the literature prior to 1972, there has been an explosion of activity in this area recently, particularly with regard to 1,3-dipolar cycloadditions... [Pg.797]

The 1,3-dipolar cycloadditions offluonnatedallenes provide a rich and varied chemistry Allenes, such as 1,1-difluoroallene and fluoroallene, that have fluorine substitution on only one of their two cumulated double bonds are very reactive toward 1,3-dipoles Such activation derives from the electron attracting inductive and hyperconjugative effects of the allylic fluorine substituent(s) that give nse to a considerable lowering of the energy of the LUMO of the C(2)-C(3) n bond [27]... [Pg.803]

Fluorinated a., -unsaturated carbonyl compounds also are reactive dipo-larophiles Because ol the highly activating carbonyl substituent, these 1,3-dipolar cycloadditions are rapid and regiospecific Good examples are the additions of... [Pg.804]

Some 1,3-dipolar cycloadditions to hetero ft bond systems have been reported, including a couple of examples of additions of azides to the activated nitrile function of tnfluoroacetonitrile [30, 3I (equation 27)... [Pg.807]


See other pages where Activities 4+3 Cycloaddition is mentioned: [Pg.385]    [Pg.283]    [Pg.283]    [Pg.233]    [Pg.8]    [Pg.25]    [Pg.311]    [Pg.324]    [Pg.482]    [Pg.182]    [Pg.183]    [Pg.439]    [Pg.64]    [Pg.102]    [Pg.35]    [Pg.85]    [Pg.38]    [Pg.39]    [Pg.53]    [Pg.550]    [Pg.561]    [Pg.632]    [Pg.813]    [Pg.91]   
See also in sourсe #XX -- [ Pg.253 , Pg.326 ]




SEARCH



1.3- Dipolar cycloaddition reactions activities

3- Aminobenzo cycloaddition reactions with activated alkynes

Activation energy 2+4]-cycloadditions

Alkynes, activation cycloaddition

Cycloaddition activated dienes with aldehydes

Cycloaddition activation energy

Cycloaddition of activated alkenes

Cycloaddition reactions activation energy

Cycloaddition-dual activation

Cycloadditions with Strained or Activated Alkynes

© 2024 chempedia.info