Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activated alumina pore size distribution

The large majority of activated alumina products are derived from activation of aluminum hydroxide, rehydrated alumina, or pseudoboehmite gel. Other commerical methods to produce specialty activated aluminas are roasting of aluminum chloride [7446-70-0], AIQ calcination of precursors such as ammonium alum [7784-25-0], AlH2NOgS2. Processing is tailored to optimize one or more of the product properties such as surface area, purity, pore size distribution, particle size, shape, or strength. [Pg.155]

Rehydration Bonded Alumina. Rehydration bonded aluminas are agglomerates of activated alumina, which derive their strength from the rehydration bonding mechanism. Because more processing steps are involved in the manufacture, they are generally more expensive than activated aluminum hydroxides. On the other hand, rehydration bonded aluminas can be produced in a wider range of particle shape, surface area, and pore size distribution. [Pg.155]

Fig. 3.23 shows pore volume distributions of some commercially important porous materials. Note that zeolites and activated carbon consist predominantly of micropores, whereas alumina and silica have pores mainly in the me.sopore range. Zeolites and active carbons have a sharp peak in pore size distribution, but in the case of the activated carbon also larger pores are present. The wide-pore silica is prepared specially to facilitate internal mass-transfer. [Pg.76]

This value is considerably higher than the experimental value (0.17) obtained from rate measurements on different size particles, but several factors may be invoked to explain the inconsistency. There will be a distribution of both pore radii and pore lengths present in the actual catalyst rather than uniquely specified values. Alumina catalysts often have a bimodal pore-size distribution. Our estimate of an apparent first-order rate constant using the method outlined above will be somewhat in error. The catalyst surface may not be equally active throughout if selective deactivation has taken place and the peripheral region is less active than the catalyst core. Other sources of error are the... [Pg.444]

For regeneration to be technically viable, it must be able to remove deposited vanadium and nickel quantitatively as well as the carbonaceous coke which was co-deposited. The catalyti-cally active metals should remain unaffected in amount, chemistry, and state of dispersion. The alumina support should remain intact, with the surface area, pore-size distribution and crush strength after treatment comparable to that of the original. To be economically viable, the process should be accomplished in a minimum of steps at nearly ambient temperatures and preferably in aqueous solution. The ultimate proof of any such scheme is for the catalytic activity of the regenerated catalyst to be equal to that of a fresh one. [Pg.99]

Figure 17.12. Pore size distribution of an activated alumina calculated from the isotherm by the method of... Figure 17.12. Pore size distribution of an activated alumina calculated from the isotherm by the method of...
The importance of aluminas is due to their availability in large quantities and in high purity presenting high thermal stability and surface areas (in the 199-259 mVg range and even more). Their pore volumes can be controlled during fabrication and bimodal pore size distributions can be achieved. However, besides these textural aspects, the surface chemical properties of aluminas play a major role, since these are involved in the formation and stabilization of catalytically active components supported on their surfaces. Despite the widespread interest in catalytic aluminas there is still only a limited understanding about the real nature of the alumina surface [44,89,99]. [Pg.206]

To achieve a significant adsorptive capacity an adsorbent must have a high specific area, which implies a highly porous structure with very small micropores. Such microporous solids can be produced in several different ways. Adsorbents such as silica gel and activated alumina are made by precipitation of colloidal particles, followed by dehydration. Carbon adsorbents are prepared by controlled burn-out of carbonaceous materials such as coal, lignite, and coconut shells. The crystalline adsorbents (zeolite and zeolite analogues are different in that the dimensions of the micropores are determined by the crystal structure and there is therefore virtually no distribution of micropore size. Although structurally very different from the crystalline adsorbents, carbon molecular sieves also have a very narrow distribution of pore size. The adsorptive properties depend on the pore size and the pore size distribution as well as on the nature of the solid surface. [Pg.36]

A large number of heterogeneous catalysts have been tested under screening conditions (reaction parameters 60 °C, linoleic acid ethyl ester at an LHSV of 30 L/h, and a fixed carbon dioxide and hydrogen flow) to identify a suitable fixed-bed catalyst. We investigated a number of catalyst parameters such as palladium and platinum as precious metal (both in the form of supported metal and as immobilized metal complex catalysts), precious-metal content, precious-metal distribution (egg shell vs. uniform distribution), catalyst particle size, and different supports (activated carbon, alumina, Deloxan , silica, and titania). We found that Deloxan-supported precious-metal catalysts are at least two times more active than traditional supported precious-metal fixed-bed catalysts at a comparable particle size and precious-metal content. Experimental results are shown in Table 14.1 for supported palladium catalysts. The Deloxan-supported catalysts also led to superior linoleate selectivity and a lower cis/trans isomerization rate was found. The explanation for the superior behavior of Deloxan-supported precious-metal catalysts can be found in their unique chemical and physical properties—for example, high pore volume and specific surface area in combination with a meso- and macro-pore-size distribution, which is especially attractive for catalytic reactions (Wieland and Panster, 1995). The majority of our work has therefore focused on Deloxan-supported precious-metal catalysts. [Pg.231]

Since adsorption is essentially a surface phenomenon, a practical adsorbent must have a high specific surface area, which means small diameter pores. Conventional adsorbents such as porous alumina, silica gel, and activated carbon have relatively wide pore size distributions, spanning the entire range from a few angstroms to perhaps 1 /xm. For convenience the pores are sometimes divided into three classes ... [Pg.31]

Fig. 1. Pore-size distribution for activated carbon, silica gel, activated alumina, two molecular-sieve carbons, and zeolite 5A (Yang, 1997). Fig. 1. Pore-size distribution for activated carbon, silica gel, activated alumina, two molecular-sieve carbons, and zeolite 5A (Yang, 1997).
Acetylene adsorption, selective, 117 Acoustic cavitation, nanostructured catalysts, 19 Activated alumina commercial, 93 commercial use, 80 pore size distribution, 89 Activated carbon... [Pg.205]

Several attempts were made to prepare pillared smectites with sufficient hydrothermal stability for use as active components in catalysts for catalytic cracking of heavy oil fractions. Although improvements were made, none of the attempts resulted in pillared materials stable enough to withstand the hydrothermal conditions found in the regenerator of a commercial FCC. One type of materials studied, i.e. alumina-montmorillonites, may be attractive alternatives to the active matrices, often alumina, currently used in FCC-catalysts designed for cracking of heavy oils. The alumina-montmorillonites can, perhaps, not be considered to be bona fide pillared smectites as they have considerably larger pores and a wider pore-size distribution than what is characteristic for pillared smectites. [Pg.112]

The overall performance of a catalyst is known to depend not only on the inherent catalytic activity of the active phase but also on the textural properties of the solid. The ability to control the specific surface area and the pore size distribution during the synthesis of amorphous silica-aluminas has been described for both surfactant micelle templated syntheses (M41-S (1), FSM-16 (2), HMS (3), SBA (4), MSU (5), KIT-1 (6)) and cluster templated sol-gel syntheses (MSA (7), ERS-8 (8)). [Pg.625]

This method has been applied to ceramic membranes (e.g., gamma-alumina membranes) and compared to other methods such as nitrogen adsorption/desorption and thermoporometry (to be discussed next) in Figure 4.13. It can be seen that the mean pore diameter measured by the three methods agrees quite well. The pore size distribution by permporometry, however, appears to be narrower than those by the other two techniques. Similar conclusions have been drawn regarding the comparison between permporometry and nitrogen adsorption/desorption methods applied to porous alumina membranes [Cao et al., 1993]. The broader pore size distribution obtained from nitrogen adsorption/desorption is attributable to the notion that the method includes the contribution of passive pores as well as active pores. Permporometry only accounts for active pores. [Pg.109]

Kim et al.32 reported the preparation, characterization, and catalytic performance of a finely dispersed and thermally stable nickel catalyst incorporated into mesopo-rous alumina. Mesoporous alumina catalysts that incorporate Ni (Ni-alumina) with different Ni/Al molar ratios were synthesized by a one-step sol-gel method using lauric acid as a template. The prepared Ni-alumina catalysts showed a relatively high surface area with a narrow pore size distribution after calcination at 700 °C these effects were independent of the Ni/Al molar ratio. The Ni-alumina catalysts were found to be highly active in the POX of methane. The deactivation of catalysts examined in this work was not due to catalyst sintering, but mainly to carbon deposition. [Pg.140]

The microporous alumino-silicate zeolites (Types A, X, and mordenite are frequently used) provide a variety of pore openings (3-10 A), cavity and channel sizes, and framework Si/Al ratios. They are also available in various cationic exchanged forms (Na, K, Li, Ag, Ca, Ba, Mg), which govern their pore openings and cationic adsorption site polarities. They are highly hydrophilic materials and must be dehydrated before use. The amorphous adsorbents contain an intricate network of micropores and mesopores of various shapes and sizes. The pore size distribution may vary over a wide range. The activated carbons and the polymeric sorbents are relatively hydrophobic in nature. The silica and alumina gels are more hydrophilic (less than zeolites) and they must also be dehydrated before use. [Pg.26]

Fig. 1 compares the pore size distributions of major commercial adsorbents discussed in this section. Activated carbons have a broad pore size distribution like activated alumina and silica gel. Although activated carbon is thought to be hydrophobic, it does adsorb... [Pg.2827]

A detailed description of a chromia-on-alumina catalyst prepared by impregnation has been given elsewhere . Another supported nonmetallic catalyst widely used commercially is cobalt molybdate-on-alumina. The preparation of this catalyst using an alumina support with controlled pore-size distribution is as follows. Silica-stabilized alumina, with greater than 50% of its surface area in 3-8 nm pores and at least 3% of the total pore volume in pores greater than 200 nm in diameter, is impregnated with an aqueous solution of cobalt and molybdenum. The finished oxysulfide catalyst was tested for hydrodesulfurization of petroleum residuum at 370°C and 100 atm for 28 days and compared with a convential cobalt-molybdate catalyst having a major portion of the surface area in 3-7 nm pores. The latter catalyst and controlled pore catalyst maintained 57 and 80% activity, respectively. [Pg.100]

Nam, Eldridge and Kittrell studied the pore size distribution for vanadia/alumina catalysts for the removal of NOx by reaction with ammonia. The pore size distributions are found to change dramatically as sulfur poisons the de-NOx reaction. The smallest pores (<10 nm in radius) are found (by porosimetry) to be filled first. As a result the surface decreases by up to 90% with 12% sulfur content, although the pore volume decreased by only 20%. The associated de-NOx activity decreased substantially. It was proposed that ammonium sulfate, bisulfate, or aluminum sulfate formed on the surface to deactivate the catalyst. [Pg.138]

Nam et al.l studied the deactivation of a commercial catalyst, 10% V2O5 on alumina, by SO2 in the reduction of NO by NH3. The feed gas was the flue gas from the combustion of No.2 fuel oil in a laboratory furnace, doped with NO and NH3. The physico-chemical properties of the deactivating catalysts were correlated with its activity and accumulating sulfur content, and the deactivation was modeled. The activation energies of fresh and deactivated catalysts were similar. The sulfur content of the catalyst, as well as the surface area, appeared to be a dominant deactivation parameter, analogous to coke-induced deactivation. Pore size distribution changes indicated that... [Pg.149]

Practically all the internal surface and a large fraction of the pore volume of finely porous materials such as activated aluminas and silica gels are contained in pores smaller than 300 A diam. (micropores). The average diameter of the micropores is usually of the order of 50 A, so that pore-size distributions cannot be measured directly even using an electron microscope. Of the indirect approaches possible, low-temperature adsorption isotherms appear to provide the most complete data. [Pg.143]


See other pages where Activated alumina pore size distribution is mentioned: [Pg.2702]    [Pg.252]    [Pg.156]    [Pg.536]    [Pg.60]    [Pg.82]    [Pg.33]    [Pg.49]    [Pg.299]    [Pg.179]    [Pg.413]    [Pg.134]    [Pg.99]    [Pg.289]    [Pg.252]    [Pg.147]    [Pg.605]    [Pg.384]    [Pg.77]    [Pg.252]    [Pg.613]    [Pg.20]    [Pg.490]    [Pg.2702]    [Pg.126]   
See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Activated alumina

Activated pore size distribution

Activation aluminas

Active aluminas

Activity distribution

Alumina activity

Alumina pore size distribution

Alumina size distribution

Pore distribution

Pore size

Pore size distribution

© 2024 chempedia.info