Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activated pore size distribution

Mey-Marom, A., and Katz, M. J., Measurement of active pore size distribution of microporous membranes—a new approach, J. Memb. ScL, 27, 119 (1986). [Pg.531]

Mikulasek, P. and Dolecek, P., Characterisation of Ceramic Tubular Membranes by Active Pore Size Distribution , Sep. Sci. TechnoL, 29, 1183 (1994)... [Pg.365]

A major difficulty in testing the validity of predictions from the DR equation is that independent estimates of the relevant parameters—the total micropore volume and the pore size distribution—are so often lacking. However, Marsh and Rand compared the extrapolated value for from DR plots of CO2 on a series of activated carbons, with the micropore volume estimated by the pre-adsorption of nonane. They found that except in one case, the value from the DR plot was below, often much below, the nonane figure (Table 4.9). [Pg.225]

Fig. 7. The effect of preparation on the pore size distribution (a), titanium dispersion (b), and the activity for epoxidation of cyclohexene (c) of titania—siUca containing 10 wt % titania and calcined in air at 673 K. Sample A, low-temperature aerogel Sample B, high-temperature aerogel Sample C, aerogel. Fig. 7. The effect of preparation on the pore size distribution (a), titanium dispersion (b), and the activity for epoxidation of cyclohexene (c) of titania—siUca containing 10 wt % titania and calcined in air at 673 K. Sample A, low-temperature aerogel Sample B, high-temperature aerogel Sample C, aerogel.
Fig. 2. Pore size distribution of typical samples of activated carbon (small pore gas carbon and large pore decolorizing carbon) and carbon molecular sieve (CMS). A / Arrepresents the increment of specific micropore volume for an increment of pore radius. Fig. 2. Pore size distribution of typical samples of activated carbon (small pore gas carbon and large pore decolorizing carbon) and carbon molecular sieve (CMS). A / Arrepresents the increment of specific micropore volume for an increment of pore radius.
Activated carbons are made by first preparing a carbonaceous char with low surface area followed by controlled oxidation in air, carbon dioxide, or steam. The pore-size distributions of the resulting products are highly dependent on both the raw materials and the conditions used in their manufacture, as maybe seen in Figure 7 (42). [Pg.275]

Fig. 7. Pore size distribution in some active carbons obtained using different precursors (42). Fig. 7. Pore size distribution in some active carbons obtained using different precursors (42).
The large majority of activated alumina products are derived from activation of aluminum hydroxide, rehydrated alumina, or pseudoboehmite gel. Other commerical methods to produce specialty activated aluminas are roasting of aluminum chloride [7446-70-0], AIQ calcination of precursors such as ammonium alum [7784-25-0], AlH2NOgS2. Processing is tailored to optimize one or more of the product properties such as surface area, purity, pore size distribution, particle size, shape, or strength. [Pg.155]

Rehydration Bonded Alumina. Rehydration bonded aluminas are agglomerates of activated alumina, which derive their strength from the rehydration bonding mechanism. Because more processing steps are involved in the manufacture, they are generally more expensive than activated aluminum hydroxides. On the other hand, rehydration bonded aluminas can be produced in a wider range of particle shape, surface area, and pore size distribution. [Pg.155]

The stmcture of activated carbon is best described as a twisted network of defective carbon layer planes, cross-linked by aHphatic bridging groups (6). X-ray diffraction patterns of activated carbon reveal that it is nongraphitic, remaining amorphous because the randomly cross-linked network inhibits reordering of the stmcture even when heated to 3000°C (7). This property of activated carbon contributes to its most unique feature, namely, the highly developed and accessible internal pore stmcture. The surface area, dimensions, and distribution of the pores depend on the precursor and on the conditions of carbonization and activation. Pore sizes are classified (8) by the International Union of Pure and AppHed Chemistry (lUPAC) as micropores (pore width <2 nm), mesopores (pore width 2—50 nm), and macropores (pore width >50 nm) (see Adsorption). [Pg.529]

In addition to surface area, pore size distribution, and surface chemistry, other important properties of commercial activated carbon products include pore volume, particle size distribution, apparent or bulk density, particle density, abrasion resistance, hardness, and ash content. The range of these and other properties is illustrated in Table 1 together with specific values for selected commercial grades of powdered, granular, and shaped activated carbon products used in Hquid- or gas-phase appHcations (19). [Pg.529]

Activated carbons for use in Hquid-phase appHcations differ from gas-phase carbons primarily in pore size distribution. Liquid-phase carbons have significantly more pore volume in the macropore range, which permits Hquids to diffuse more rapidly into the mesopores and micropores (69). The larger pores also promote greater adsorption of large molecules, either impurities or products, in many Hquid-phase appHcations. Specific-grade choice is based on the isotherm (70,71) and, in some cases, bench or pilot scale evaluations of candidate carbons. [Pg.533]

Fig. 6. Pore size distributions obtained by analysis of the methane isotherm for the two potassium hydroxide activated carbons. Fig. 6. Pore size distributions obtained by analysis of the methane isotherm for the two potassium hydroxide activated carbons.
All packing materials produced at PSS are tested for all relevant properties. This includes physical tests (e.g., pressure stability, temperature stability, permeability, particle size distribution, porosity) as well as chromatographic tests using packed columns (plate count, resolution, peak symmetry, calibration curves). PSS uses inverse SEC methodology (26,27) to determine chromatographic-active sorbent properties such as surface area, pore volume, average pore size, and pore size distribution. Table 9.10 shows details on inverse SEC tests on PSS SDV sorbent as an example. Pig. 9.10 shows the dependence... [Pg.288]

Typical pore size distributions result in mean pore diameters of around 15 //m. Even long and intensive efforts did not succeed in decreasing this value decisively in order to enable production of micropo-rous pocketing material resistant to penetration [65, 66], In practice PVC separators prove themselves in starter batteries in climatically warmer areas, where the battery life is however noticeably reduced because of increased corrosion rates at elevated temperature and vibration due to the road condition. The failure modes are similar for all leaf separator versions shedding of positive active mass fills the mud room at the bottom of the container and leads to bottom shorts there, unless — which is the normal case — the grids of the positive electrodes are totally corroded beforehand. [Pg.265]

Effectiveness of selective adsorption of phenanthrene in Triton X-100 solution depends on surface area, pore size distribution, and surface chemical properties of adsorbents. Since the micellar structure is not rigid, the monomer enters the pores and is adsorbed on the internal surfaces. The size of a monomer of Triton X-100 (27 A) is larger than phenanthrene (11.8 A) [4]. Therefore, only phenanthrene enters micropores with width between 11.8 A and 27 A. Table 1 shows that the area only for phenanthrene adsorption is the highest for 20 40 mesh. From XPS results, the carbon content on the surfaces was increased with decreasing particle size. Thus, 20 40 mesh activated carbon is more beneficial for selective adsorption of phenanthrene compared to Triton X-100. [Pg.462]

Fig. 3.23 shows pore volume distributions of some commercially important porous materials. Note that zeolites and activated carbon consist predominantly of micropores, whereas alumina and silica have pores mainly in the me.sopore range. Zeolites and active carbons have a sharp peak in pore size distribution, but in the case of the activated carbon also larger pores are present. The wide-pore silica is prepared specially to facilitate internal mass-transfer. [Pg.76]

For most catalysts, mesopores are dominant, whereas for materials derived from zeolites or active carbons, micropores are the most important. Determination of the pore size distribution is indispensable in catalysis research. [Pg.96]

Uses of adsorption studies Determination of catalytically active surface area and elucidation of reaction kinetics Determination of specific surface areas and pore size distributions... [Pg.172]

This value is considerably higher than the experimental value (0.17) obtained from rate measurements on different size particles, but several factors may be invoked to explain the inconsistency. There will be a distribution of both pore radii and pore lengths present in the actual catalyst rather than uniquely specified values. Alumina catalysts often have a bimodal pore-size distribution. Our estimate of an apparent first-order rate constant using the method outlined above will be somewhat in error. The catalyst surface may not be equally active throughout if selective deactivation has taken place and the peripheral region is less active than the catalyst core. Other sources of error are the... [Pg.444]

Pore size optimization is one area where developmental efforts have been focused. Unimodal pore (NiMo) catalysts were found highly active for asphaltene conversion from resids but a large formation of coke-like sediments. Meanwhile, a macroporous catalyst showed lower activity but almost no sediments. The decrease of pore size increases the molecular weight of the asphaltenes in the hydrocracked product. An effective catalyst for VR is that for which average pores size and pore size distribution, and active phase distribution have been optimized. Therefore, the pore size distribution must be wide and contain predominantly meso-pores, but along with some micro- and macro-pores. However, the asphaltene conversion phase has to be localized in the larger pores to avoid sediment formation [134],... [Pg.54]

High porosity carbons ranging from typically microporous solids of narrow pore size distribution to materials with over 30% of mesopore contribution were produced by the treatment of various polymeric-type (coal) and carbonaceous (mesophase, semi-cokes, commercial active carbon) precursors with an excess of KOH. The effects related to parent material nature, KOH/precursor ratio and reaction temperature and time on the porosity characteristics and surface chemistry is described. The results are discussed in terms of suitability of produced carbons as an electrode material in electric double-layer capacitors. [Pg.86]

Activation with KOH was recognized originally as an efficient way of producing microporous carbons with relatively narrow pore size distribution and extremely high surface area. The results of present study demonstrate a considerable flexibility of the process in terms of porosity development and, to some extent, surface properties. [Pg.94]

The activation with KOH of selected parent materials under appropriate process conditions (temperature, time, reagent ratio) can provide highly porous carbons of controlled pore size distribution and surface chemistry, also suitable for use as electrode materials in supercapacitors. [Pg.95]


See other pages where Activated pore size distribution is mentioned: [Pg.2702]    [Pg.52]    [Pg.252]    [Pg.156]    [Pg.253]    [Pg.1500]    [Pg.1500]    [Pg.141]    [Pg.410]    [Pg.7]    [Pg.18]    [Pg.204]    [Pg.265]    [Pg.266]    [Pg.461]    [Pg.754]    [Pg.785]    [Pg.219]    [Pg.518]    [Pg.697]    [Pg.280]    [Pg.54]    [Pg.35]    [Pg.87]    [Pg.93]    [Pg.536]   
See also in sourсe #XX -- [ Pg.271 , Pg.272 ]




SEARCH



Activated alumina pore size distribution

Activated carbons pore size distributions

Activity distribution

Pore distribution

Pore size

Pore size distribution

Pore size distribution for activated

Pore size distribution for activated carbons

© 2024 chempedia.info