Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylates Heck reaction

Brown, J.M. and Hii, K.K. (1996) Characterization of reactive intermediates in palladium-catalyzed arylation of methyl acrylate (Heck reaction). Angew. Chem., Int. Ed. Engl., 35, 657-9. [Pg.47]

A Heck reactions 1 l-Acetyl-3-bromoindole Methyl acrylate, PdiOAc), Ar,P, EtjN, DMF 50 [1]... [Pg.110]

The use of ionic liquids as reaction media for the palladium-catalyzed Heck reaction was first described by Kaufmann et ak, in 1996 [85]. Treatment of bromoben-zene with butyl acrylate to provide butyl trans-cinnamate succeeded in high yield in molten tetraallcylammonium and tetraallcylphosphonium bromide salts, without addition of phosphine ligands (Scheme 5.2-16). [Pg.241]

Scheme 5.2-16 Pd-calalyzed Heck reaction between butyl acrylate and bromobenzene,... Scheme 5.2-16 Pd-calalyzed Heck reaction between butyl acrylate and bromobenzene,...
An interesting parallel was found while the microwave-enhanced Heck reaction was explored on the C-3 position of the pyrazinone system [29]. The additional problem here was caused by the capability of the alkene to undergo Diels-Alder reaction with the 2-azadiene system of the pyrazinone. An interesting competition between the Heck reaction and the Diels-Alder reaction has been noticed, while the outcome solely depended on the substrates and the catalyst system. Microwave irradiation of a mixture of pyrazinone (Re = H), ethyl acrylate (Y = COOEt) and Pd(dppf)Cl2 resulted in the formation of a mixture of the starting material together with the cycloaddition product in a 3 1 ratio (Scheme 15). On the contrary, when Pd(OAc)2 was used in combination with the bulky phosphine ligand 2-(di-t-butylphosphino)biphenyl [41-44], the Heck reaction product was obtained as the sole product. When a mixture of the pyrazinone (Re = Ar) with ethyl acrylate or styrene and Pd(dppf)Cl2 was irradiated at 150 °C for 15 min, both catalytic systems favored the Heck reaction product with no trace of Diels-Alder adduct. [Pg.278]

Palladium metal catalysts supported on organic resins containing tertiary amino, cyano, carboxyl, and pyridyl groups have been recently investigated in some Heck reactions, such as the coupling of iodobenzene with methyl acrylate and methyl vinyl ether (Scheme 11) [31]. [Pg.443]

To assess the utility of this resin, we chose to employ it in the evaluation of the heterogeneity of a commercial polymer-entrapped Pd(OAc)2 precatalyst, Pd-EnCat, also sold by Reaxa. This precatalyst was designed with the goal of providing a heterogeneous catalyst that would allow simple removal of palladium from reactions (24-26). PVPy and QTU were first used as poisons in the Heck reaction of iodobenzene and n-butyl acrylate in DMF using PdfC as the palladium... [Pg.196]

Another important type of reactivity of palladium, namely oxidative addition to Pd(0), is the foundation for several methods of forming carbon-carbon bonds. Aryl126 and alkenyl127 halides react with alkenes in the presence of catalytic amounts of palladium to give net substitution of the halide by the alkenyl group. The reaction, known as the Heck reaction,128 is quite general and has been observed for simple alkenes, aryl-substituted alkenes, and substituted alkenes such as acrylate esters, vinyl ethers, and A-vinylamides.129... [Pg.715]

Heck reactions can be carried out in the absence of phosphine ligands.141 These conditions usually involve Pd(OAc)2 as a catalyst, along with a base and a phase transfer salt such as tetra-n-butylammonium bromide. These conditions were originally applied to stereospecific coupling of vinyl iodides with ethyl acrylate and methyl vinyl ketone. [Pg.718]

Further, we examined the Heck reaction between w-butyl acrylate and 4-bromobenzotrifluoride 5 in the presence of 2 mol% Pd clusters in a singlevessel monomode m/w oven fitted with an infrared thermometer. 100% conversion with quantitative yield to the cinnamate was obtained after 5 min irradiation at 75 W/240 °C. We then repeated the reaction under conventional heating at 240 °C. After 3.5 min a black tarry gel formed. Extraction followed by GC analysis showed only cinnamate, but the tarry material (probably acrylate polymers/oligomers) could not be analysed. These experiments show that when clusters are present different results are obtained depending whether m/w heating or conventional heating is used. In principle, this could be the result of hot spots created on the metal clusters. [Pg.212]

Thiemann and coworkers [68] sought novel types of steroids with different biological activity, and in doing so prepared areno-annulated compounds such as 6/1-133 (Scheme 6/1.35). This is achieved with a Heck reaction of 6/1-132 with an acrylate, followed by an electrocydic ring closure of the formed hexatriene. The reaction is then terminated by removal of the nitro group, with formation of the aromatic ring system. [Pg.381]

Synthesis of dithieno[2,3-A2,3-,7]thiophene derivatives 122 has been accomplished through the Heck reaction of 3-(4-bromo-2-thienyl)acrylic acid 302 to afford 3-(2,4-thienylene)diacrylic acid 303 which was cyclized with thionyl chloride and a catalytic amount of pyridine to the dichloride 120 in 75% yield (Scheme 56) <2005MOL279>. [Pg.674]

A few additional Pd-catalyzed schemes have been employed for Ilac type cyclization chemistry. Palladium-phenanthroline complexes were used by the Ragaini group to prepare indoles via the intermolecular cyclization of nitroarenes and alkynes in the presence of carbon monoxide <06JOC3748>. Jia and Zhu employed Pd-catalysis for the annulation of o-haloanilines with aldehydes <06JOC7826>. A one-pot Ugi/Heck reaction was employed in the preparation of polysubstituted indoles from a four-component reaction system of acrylic aldehydes, bromoanilines, acids, and isocyanides <06TL4683>. [Pg.155]

Novel C2-symmetric thiophene-containing ligands have recently been prepared and utilized in asymmetric synthesis. Dithiophene 158 was utilized as a ligand in the asymmetric reduction of p-ketoesters (prostereogenic carbonyl) and acrylic acids (carbon-carbon double bond) <00JOC2043>. Dibenzo[b]thiophene 159 was utilized as a ligand in enantioselective Heck reactions of 2-pyrrolines <00SL1470>. [Pg.101]

Metal-catalyzed cross-couplings are key transformations for carbon-carbon bond formation. The applicability of continuous-flow systems to this important reaction type has been shown by a Heck reaction carried out in a stainless steel microreactor system (Snyder et al. 2005). A solution of phenyliodide 5 and ethyl acrylate 6 was passed through a solid-phase cartridge reactor loaded with 10% palladium on charcoal (Scheme 2). The process was conducted with a residence time of 30 min at 130°C, giving the desired ethyl cinnamate 7 in 95% isolated yield. The batch process resulted in 100% conversion after 30 min at 140°C using a preconditioned catalyst. [Pg.10]

Since Heck reactions on metalated substrates are known (e.g., with organomercurials [105]), applications of these transformations to pyrrole chemistry have been reported. For example, mercuration of pyrrole 149 followed by exposure to methyl acrylate under Heck reaction conditions leads to 150 [106]. This Heck variation has been extended by Smith to mercurated porphyrins [107]. Pyrrolylacrylates like 150 have also been made using conventional Heck reactions on 3-iodopyrroles [108,109]. [Pg.58]

Both inter- and intramolecular Heck reactions of indoles have been pursued and these will be considered in turn. Appropriately, Heck and co-workers were the first to use Pd-catalyzed vinyl substitution reactions with haloindoles [239]. Thus, l-acetyl-3-bromoindole (217) gave a 50% yield of 3-indolylacrylate 218. A similar reaction with 5-bromoindole yielded ( )-methyl 3-(5-indolyl)acrylate (53% yield), but 3-bromoindole gave no identifiable product. [Pg.123]

Somei and co-workers made extensive use of the Heck reaction with haloindoles in their synthetic approaches to ergot and other alkaloids [26, 40, 41, 240-249]. Thus, 4-bromo-l-carbomethoxyindole (69%) [26], 7-iodoindole (91%) (but not 7-iodoindoline or l-acetyl-7-iodoindoline) [40, 41], and l-acetyl-5-iodoindoline (96%) [41] underwent coupling with methyl acrylate under standard conditions (PdlOAc /PhsP/EtjN/DMF/100 °C) to give the corresponding (E)-indolylacrylates in the yields indicated. The Heck coupling of methyl acrylate with thallated indoles and indolines is productive in some cases [41, 241, 246]. For example, reaction of (3-formylindol-4-yl)thallium bis-trifluoroacetate (186) affords acrylate 219 in excellent yield [241], Similarly, this one-pot thallation-palladation operation from 3-formylindole and methyl vinyl ketone was used to synthesize 4-(3-formylindol-4-yl)-3-buten-2-one (86% yield). [Pg.123]

Somei adapted this chemistry to syntheses of (+)-norchanoclavine-I, ( )-chanoclavine-I, ( )-isochanoclavine-I, ( )-agroclavine, and related indoles [243-245, 248]. Extension of this Heck reaction to 7-iodoindoline and 2-methyl-3-buten-2-ol led to a synthesis of the alkaloid annonidine A [247]. In contrast to the uneventful Heck chemistry of allylic alcohols with 4-haloindoles, reaction of thallated indole 186 with 2-methyl-4-trimethylsilyl-3-butyn-2-ol affords an unusual l-oxa-2-sila-3-cyclopentene indole product [249]. Hegedus was also an early pioneer in exploring Heck reactions of haloindoles [250-252], Thus, reaction of 4-bromo-l-(4-toluenesulfonyl)indole (11) under Heck conditions affords 4-substituted indoles 222 [250], Murakami described the same reaction with ethyl acrylate [83], and 2-iodo-5-(and 7-) azaindoles undergo a Heck reaction with methyl acrylate [19]. [Pg.124]

The vinyl triflate of Komfeld s ketone has been subjected to Heck reactions with methyl acrylate, methyl methacrylate, and methyl 3-(Af-rerf-butoxycarbonyl-lV-methyl)amino-2-methylenepropionate leading to a formal synthesis of lysergic acid [259]. A similar Heck reaction between l-(phenylsulfonyl)indol-5-yl triflate and dehydroalanine methyl ester was described by this research group [260]. Chloropyrazines undergo Heck couplings with both indole and 1-tosylindole, and these reactions are discussed in the pyrazine Chapter [261], Rajeswaran and Srinivasan described an interesting arylation of bromomethyl indole 229 with arenes [262]. Subsequent desulfurization and hydrolysis furnishes 2-arylmethylindoles 230. Bis-indole 231 was also prepared in this study. [Pg.126]

In one case, the intermolecular Heck reaction of 3-pyridyltriflate with ethyl acrylate was accelerated by LiCl to give 159 [127,128], Here, both electronic and steric effects all favored p-substitution. In another case, however, electronic effects prevailed and complete a-substitution was observed. In the presence of an electron-donating substituent (i.e., a protected amine), 3-bromopyridine 160 was coupled with f-butoxyethylene to give 3-pyridyl methyl ketone 162 [126]. The regiochemistry of the Heck reaction was governed by inductive effects, leading to intermediate 161. [Pg.214]

Although the Heck reactions of heteroaryl halides are now commonplace [76], few examples are found using organohalide substrates possessing a carboxylic acid moiety [77]. However, 4,5-dibromo-2-furancarboxylic acid (86) underwent a Heck reaction with ethyl acrylate to afford diacrylate 87 [78]. [Pg.283]

Yamanaka s group reported the Heck reactions of 4-bromo- and 5-bromo-4-methyloxzoles with ethyl acrylate and acrylonitrile, respectively [22a]. [Pg.330]

Generally, the intermolecular Heck reaction between 2-iodo-, 4-iodo- and 5-iodo-l-methylimidazoles and olefins suffers from low yields (< 25%). Therefore, these transformations are of limited synthetic utility [29]. In one case, variable yields for adduct 62 (15-58%) were observed for the Heck reaction of 5-bromo-l-methyl-2-phenylthio-lf/-imidazole (61) and a large excess of methyl acrylate [42]. [Pg.347]

Analogous to simple carbocyclic aryl halides, 5-halopyrimidines readily take part in Pd-catalyzed olefinations under standard Heck conditions. In a simple case, Yamanaka et aL synthesized ethyl 2,4-dimethyl-5-pyrimidineacrylate (102) via the Heck reaction of 5-iodo-2,4-dimethylpyrimidine and ethyl acrylate [70]. [Pg.395]

Heck reactions of arenediazonium salts can be conveniently carried out with [Pd(OAc)2] in ethanol. This method was extended to the one-pot sequential diazotation and allylation of aniUnes (Scheme 6.7). The latter were converted to the corresponding diazonium salts at 0 °C with NaNOa + 42 % HBF4. Ethyl acrylate and [Pd(OAc)2] were added and the reaction mixture was heated on a water bath for 1 h. The corresponding cinnamate esters were obtained in 65-80 % yield [22],... [Pg.168]

Coupling of 1 with iodobenzene under Heck reaction conditions gave the phenyl-substituted diene 242-Ph which was isolated in up to 78% yield [146-148]. When heated at 80 °C in DMF or MeCN with various dienophiles 244-R (acrylate, maleate, or fumarate), 242-Ph and its analogs 242-Ar obtained from 1 and other haloarenes cleanly gave the spiro[2.5]octene derivatives 245-Ar (Scheme 57). [Pg.134]


See other pages where Acrylates Heck reaction is mentioned: [Pg.193]    [Pg.193]    [Pg.45]    [Pg.304]    [Pg.197]    [Pg.723]    [Pg.73]    [Pg.185]    [Pg.399]    [Pg.512]    [Pg.108]    [Pg.42]    [Pg.182]    [Pg.610]    [Pg.88]    [Pg.124]    [Pg.125]    [Pg.315]    [Pg.175]    [Pg.292]    [Pg.284]    [Pg.123]    [Pg.254]    [Pg.327]   
See also in sourсe #XX -- [ Pg.187 , Pg.188 , Pg.189 ]

See also in sourсe #XX -- [ Pg.290 , Pg.297 , Pg.299 , Pg.300 ]




SEARCH



Acrylate reaction

Acrylic Heck-type reactions

© 2024 chempedia.info