Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylates dienes

K. B. Wagener and T. A. Davidson, Non-Conjugated and Conjugated Dienes in Acrylic Diene Metathesis (ADMET) Chemistry, in New Macromolecular Architecture and Functions. Proceedings OUMS 95, M. Kamachi and A. Nakamura (Eds.), Springer Verlag, New York, 1996. [Pg.15]

The covalent bonds for dormant species include C—C (eq l),1617 C—S (eqs 2 and 9),131418 C—Se (eq 3),19 C—O (eqs 4 and 5),20 25 C—halogen (eqs 6 and 8),26 28 and C—metal (eq 7),29 all of which can reversibly and homolytically be activated into the growing radical species by physical stimuli such as heat or light or by chemical stimuli such as a metal catalyst or another radical species. Although the controllability, applicability, and reaction conditions depend on which systems are employed, a wide variety of vinyl monomers such as styrenes, methacrylates, acrylates, dienes, and vinyl acetate can be polymerized in a controlled fashion with the use of these or similar systems. Among these, nitroxide-mediated (eq 4)20 24 and metal-catalyzed27 28 systems... [Pg.459]

Since TEMPO is only a regulator, not an initiator, radicals must be generated from another source the required amount of TEMPO depends on the initiator efficiency. Application of alkoxyamines (i.e., unimolecular initiators) allows for stoichiometric amounts of the initiating and mediating species to be incorporated and enables the use of multifunctional initiators, growing chains in several directions [61]. Numerous advances have been made in both the synthesis of different types of unimolecular initiators (alkoxyamines) that can be used not only for the polymerization of St-based monomers, but other monomers as well [62-69]. Most recently, the use of more reactive alkoxyamines and less reactive nitroxides has expanded the range of polymerizable monomers to acrylates, dienes, and acrylamides [70-73]. An important issue is the stability of nitroxides and other stable radicals. Apparently, slow self-destruction of the PRE helps control the polymerization [39]. Specific details about use of stable free radicals for the synthesis of copolymers can be found in later sections. [Pg.15]

Boutevin [2], in his review on Telechelic oligomers by radical reactions developed the categories of functional initiators, i.e., diazoic compounds, hydrogen peroxide, and oxygenated substances. He examined the different reactivities and combinations of such initiators with monomers in order to synthesize telechelic oligomers. Boutevin [2] also summarized the monomers able to totally recombine or to avoid termination by disproportionation. He showed a quantitative amount of recombination only for styrene, acrylates, dienes, and acrylonitrile [31-33]. [Pg.41]

Acrylate Diene Conditions Ratio (endoiexo) endo d.r.a (Major Adduct) Yield (%) Ref... [Pg.612]

Acrylate Diene Conditions3 Ratiob (endojexo) d.r.b c Yield b (%) mp (°C)... [Pg.617]

Oligomerization Reactions. Lithium naphthalenide has long been a convenient initiator for anionic living polymerization reactions. Thus, styrenes, acrylates, dienes, and other monomers have been polymerized using lithium naphthalenide as an anionic initiator. In some circumstances, however, oligomerization can be controlled to furnish only dimers (eq 11). Also, in the presence of a secondary amine, 1,3-dienes can be persuaded to react in a formal 1,4-fashion to produce allyl amines (eq 12). ... [Pg.242]

A wide variety of polymeric materials, other than those discussed previously, are described in the literature. Given once again the availability of recent monographs [ 1-5], we will limit our treatment of this rather marginal system, to some relevant examples. Polynaphthols were synthesized by combining artificial umshi and triglyceride [97, 98] and, in another vein, acrylic diene metathesis polymerization was applied to triglyceride [99-101]. Composites with oil-based matrices have been frequently described [4] and continue to arise interest as shown by recent contributions [102-104]. [Pg.60]

Remark. Vinyl and related monomers are those whose polymerization is the result of an addition reaction onto C=C double bond vinyl, acrylic, diene, allyl, etc., monomers. [Pg.274]

A bewildering array of names are used to describe the various controlled/living radial polymerization techniques currently in use. These include stable free radical polymerization (SFRP) [35-38], nitroxide mediated polymerization (NMP) [39], atom transfer radical polymerization (ATRP) [40-42 ] and degenerate transfer processes (DT) which include radical addition-fragmentation transfer (RAFT) [43, 44] and catalyst chain transfer (CCT). These techniques have been used to polymerize many monomers, including styrene (both linear and star polymers) acrylates, dienes, acrylamides, methacrylates, and ethylene oxide. Research activity in this field is currently expanding at a very high rate, as is indicated by the many papers published and patents issued. [Pg.65]

Diene carboxylates can be prepared by the reaction of alkenyl halides with acrylates[34]. For example, pellitorine (30) is prepared by the reaction of I-heptenyl iodide (29) with an acrylate[35]. Enol triflates are reactive pseudo-halides derived from carbonyl compounds, and are utilized extensively for novel transformations. The 3,5-dien-3-ol triflate 31 derived from a 4,5-unsaturated 3-keto steroid is converted into the triene 32 by the reaction of methyl acrylate[36]. [Pg.132]

Copolymerization can be carried out with styrene, acetonitrile, vinyl chloride, methyl acrylate, vinylpyridines, 2-vinylfurans, and so forth. The addition of 2-substituted thiazoles to different dienes or mixtures of dienes with other vinyl compounds often increases the rate of polymeriza tion and improves the tensile strength and the rate of cure of the final polymers. This allows vulcanization at lower temperature, or with reduced amounts of accelerators and vulcanizing agents. [Pg.398]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Titanium—Vanadium Mixed Metal Alkoxides. Titanium—vanadium mixed metal alkoxides, VO(OTi(OR)2)2, are prepared by reaction of titanates, eg, TYZOR TBT, with vanadium acetate ia a high boiling hydrocarbon solvent. The by-product butyl acetate is distilled off to yield a product useful as a catalyst for polymeri2iag olefins, dienes, styrenics, vinyl chloride, acrylate esters, and epoxides (159,160). [Pg.151]

Chlorosulfonated polyethylene. Ethylene—acrylic elastomers. Ethylene—propjiene—diene mbber, Eluorocarbon elastomers. [Pg.464]

Chlorosulfonated polyethylene, Vol. 8, Ethylene—acrylic elastomers, Vol. 8, Ethylene—propjiene—diene mbber, Vol. 8, Eluorocarbon elastomers, Vol. 8,... [Pg.2]

At one time butadiene-acrylonitrile copolymers (nitrile rubbers) were the most important impact modifiers. Today they have been largely replaced by acrylonitrile-butadiene-styrene (ABS) graft terpolymers, methacrylate-buta-diene-styrene (MBS) terpolymers, chlorinated polyethylene, EVA-PVC graft polymers and some poly acrylates. [Pg.341]

There are probably several factors which contribute to determining the endo exo ratio in any specific case. These include steric effects, dipole-dipole interactions, and London dispersion forces. MO interpretations emphasize secondary orbital interactions between the It orbitals on the dienophile substituent(s) and the developing 7t bond between C-2 and C-3 of the diene. There are quite a few exceptions to the Alder rule, and in most cases the preference for the endo isomer is relatively modest. For example, whereas cyclopentadiene reacts with methyl acrylate in decalin solution to give mainly the endo adduct (75%), the ratio is solvent-sensitive and ranges up to 90% endo in methanol. When a methyl substituent is added to the dienophile (methyl methacrylate), the exo product predominates. ... [Pg.638]

Functionalized rubbers. Butyl rubber (isobutylene with about 2% iso-prene) has been functionalized through the residual double bonds via the bro-mobutyl intermediate to produce a material with 2% conjugated diene (see Fig. 19). This resin shows high reactivity towards e-beam or UV (free radical or cationic [53]). The bromo butyl intermediate has also been used to attach acrylate or photoinitiator groups to the butyl backbone [54]. [Pg.739]

Enamines have been observed to act both as dienophiles (46-48) and dienes (47,49) (dienamines in this case) in one-step, Diels-Alder type of 1,4 cycloadditions with acrylate esters and their vinylogs. This is illustrated by the reaction between l-(N-pyrrolidino)cyclohexene (34) and methyl t/-a i-2,4-pentadienoate (35), where the enamine acts as the dienophile to give the adduct 36 (47). In a competitive type of reaction, however, the... [Pg.220]

The Diels-Alder reaction of a diene with a substituted olefinic dienophile, e.g. 2, 4, 8, or 12, can go through two geometrically different transition states. With a diene that bears a substituent as a stereochemical marker (any substituent other than hydrogen deuterium will suffice ) at C-1 (e.g. 11a) or substituents at C-1 and C-4 (e.g. 5, 6, 7), the two different transition states lead to diastereomeric products, which differ in the relative configuration at the stereogenic centers connected by the newly formed cr-bonds. The respective transition state as well as the resulting product is termed with the prefix endo or exo. For example, when cyclopentadiene 5 is treated with acrylic acid 15, the cw fo-product 16 and the exo-product 17 can be formed. Formation of the cw fo-product 16 is kinetically favored by secondary orbital interactions (endo rule or Alder rule) Under kinetically controlled conditions it is the major product, and the thermodynamically more stable cxo-product 17 is formed in minor amounts only. [Pg.91]


See other pages where Acrylates dienes is mentioned: [Pg.61]    [Pg.61]    [Pg.61]    [Pg.618]    [Pg.155]    [Pg.22]    [Pg.313]    [Pg.40]    [Pg.20]    [Pg.263]    [Pg.61]    [Pg.61]    [Pg.61]    [Pg.618]    [Pg.155]    [Pg.22]    [Pg.313]    [Pg.40]    [Pg.20]    [Pg.263]    [Pg.516]    [Pg.354]    [Pg.328]    [Pg.240]    [Pg.364]    [Pg.523]    [Pg.296]    [Pg.49]    [Pg.539]    [Pg.41]    [Pg.64]    [Pg.566]    [Pg.588]    [Pg.44]    [Pg.304]   
See also in sourсe #XX -- [ Pg.355 ]




SEARCH



© 2024 chempedia.info