Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids chemical equilibrium

An example of enhanced ion production. The chemical equilibrium exists in a solution of an amine (RNH2). With little or no acid present, the equilibrium lies well to the left, and there are few preformed protonated amine molecules (ions, RNH3+) the FAB mass spectrum (a) is typical. With more or stronger acid, the equilibrium shifts to the right, producing more protonated amine molecules. Thus, addition of acid to a solution of an amine subjected to FAB usually causes a large increase in the number of protonated amine species recorded (spectrum b). [Pg.19]

A tabulation of the partial pressures of sulfuric acid, water, and sulfur trioxide for sulfuric acid solutions can be found in Reference 80 from data reported in Reference 81. Figure 13 is a plot of total vapor pressure for 0—100% H2SO4 vs temperature. References 81 and 82 present thermodynamic modeling studies for vapor-phase chemical equilibrium and liquid-phase enthalpy concentration behavior for the sulfuric acid—water system. Vapor pressure, enthalpy, and dew poiat data are iacluded. An excellent study of vapor—liquid equilibrium data are available (79). [Pg.180]

Tables 13-1, 13-2, and 13-4 include data on formic acid and acetic acid, two substances that tend to dimerize in the vapor phase according to the chemical-equilibrium expression... Tables 13-1, 13-2, and 13-4 include data on formic acid and acetic acid, two substances that tend to dimerize in the vapor phase according to the chemical-equilibrium expression...
It is known that the order of acidity of hydrogen halides (HX, where X = F, Cl, Br, I) in the gas phase can be successfully predicted by quantum chemical considerations, namely, F < Cl < Br < I. However, in aqueous solution, whereas hydrogen chloride, bromide, and iodide completely dissociate in aqueous solutions, hydrogen fluoride shows a small dissociation constant. This phenomenon is explained by studying free energy changes associated with the chemical equilibrium HX + H2O + HjO in the solu-... [Pg.431]

We can use this more general view to discuss the strengths of acids. In our generalized acid-base reaction (52), the proton transfer implies the chemical bond in HB, must be broken and the chemical bond in HB2 must be formed. If the HB, bond is easily broken, then HB, will be a strong acid. Then equilibrium will tend to favor a proton transfer from HB, to some other base, B2. If, on the other hand, the HB, bond is extremely stable, then this substance will be a weak acid. Equilibrium will tend to favor a proton transfer from some other acid, HB2, to base B, forming the stable HB, bond. [Pg.194]

Charles, Jacques, 57 Charles law, 58 Chemical bonding, see Bonding Chemical bonds, see Bond Chemical change, 38 Chemical energy, 119 Chemical equations, see Equations Chemical equilibrium, law of, 152 Chemical formulas, see Formula Chemical kinetics, 124 Chemical reactions, see Reactions Chemical stability, 30 Chemical symbols, 30 not from common names, 31 see inside back cover Chemotherapy, 434 Chlorate ion, 360 Chloric acid, 359 Chlorides chemistry of, 99 of alkali metals, 93,103 of third-row elements, 103 Chlorine... [Pg.457]

Presto, a third-order rate law This multiplication should not be taken as representing a chemical event or as carrying such implications it is only a valid mathematical manipulation. Other similar transformations can be given,2 as when one multiplies by another factor of unity derived from the acid ionization equilibrium of HOC1. (The reader may show that this gives a second-order rate law.) These considerations illustrate that it is the rate law and not the reaction itself that has associated with it a unique order. [Pg.8]

What Do We Need to Know Already This chapter huilds on the introduction to acids and bases in Section J. It also draws on and illustrates the principles of thermodynamics (Chapters 6 and 7) and chemical equilibrium (Chapter 9). To a smaller extent, it uses the concepts of hydrogen bonding (Section 5.5), bond polarity (Section 2.12), and bond strength (Sections 2.14 and 2.15). [Pg.515]

Table 16-2 List of input components for the simplest case of the acid-base balance of unpolluted marine clouds. Also shown are the mass conservation statements, chemical equilibrium expressions and constants, and the requirement for charge balance... Table 16-2 List of input components for the simplest case of the acid-base balance of unpolluted marine clouds. Also shown are the mass conservation statements, chemical equilibrium expressions and constants, and the requirement for charge balance...
In this chapter, we present basic features of chemical equilibrium. We explain why reactions such as the Haber process cannot go to completion. We also show why using catalysts and elevated temperatures can accelerate the rate of this reaction but cannot shift Its equilibrium position in favor of ammonia and why elevated temperature shifts the equilibrium In the wrong direction. In Chapters 17 and 18, we turn our attention specifically to applications of equilibria. Including acid-base chemistry. [Pg.1136]

A third possibility is that mineral ions leak out of tissue in the presence of phenolic acids, not because membrane permeability is altered, but rather because the driving force that maintains high ion concentrations in cells (i.e. PD) is dissipated by the chemicals. Without an electrical potential, ions would distribute solely according to their chemical concentrations. Thus, most ions would leak out of cells to reach chemical equilibrium with the external environment. [Pg.176]

A chemical reaction subsequent to a fast (reversible) electrode reaction (Eq. 5.6.1, case b) can consume the product of the electrode reaction, whose concentration in solution thus decreases. This decreases the overpotential of the overall electrode process. This mechanism was proposed by R. Brdicka and D. H. M. Kern for the oxidation of ascorbic acid, converted by a fast electrode reaction at the mercury electrode to form dehydro-ascorbic acid. An equilibrium described by the Nernst equation is established at the electrode between the initial substance and this intermediate product. Dehydroascorbic acid is then deactivated by a fast chemical reaction with water to form diketogulonic acid, which is electroinactive. [Pg.361]

Acid-base equilibrium is very important to inorganic chemical reactions. Adsorption-desorption and precipitation-dissolution reactions are also of major importance in assessing the geochemical fate of deep-well-injected inorganics. Interactions between and among metals in solution and solids in the deep-well environment can be grouped into four types1 2 3 4 ... [Pg.819]

Acids are selected based on the nature of the well treatment and the mineralogy of the formation. The critical chemical factors in properly selecting an acid are stoichiometry (how much formation material is dissolved by a given amount of acid), the equilibrium constant (complete reaction of the acid is desired), and reaction rate between the acid and the formation material (106). [Pg.20]

Values of Kadd for the addition of water (hydration) of alkenes to give the corresponding alcohols. These equilibrium constants were obtained directly by determining the relative concentrations of the alcohol and alkene at chemical equilibrium. The acidity constants pATaik for deprotonation of the carbocations by solvent are not reported in Table 1. However, these may be calculated from data in Table 1 using the relationship pA ik = pATR + logA dd (Scheme 7). [Pg.84]

The chromate (VI) / dichromate (VI) system is another example of a chemical equilibrium. A few cm3 of aqueous potassium chromate (VI) solution (containing yellow Cr042 ions) are placed in a beaker. On addition of several drops of colourless dilute sulphuric acid, the yellow solution turns orange. The following equilibrium has been set up. [Pg.83]

One could go on with examples such as the use of a shirt rather than sand reduce the silt content of drinking water or the use of a net to separate fish from their native waters. Rather than that perhaps we should rely on the definition of a chemical equilibrium and its presence or absence. Chemical equilibria are dynamic with only the illusion of static state. Acetic acid dissociates in water to acetate-ion and hydrated hydrogen ion. At any instant, however, there is an acid molecule formed by recombination of acid anion and a proton cation while another acid molecule dissociates. The equilibrium constant is based on a dynamic process. Ordinary filtration is not an equilibrium process nor is it the case of crystals plucked from under a microscope into a waiting vial. [Pg.404]

Ionized or charged organic moieties do not readily pass through the lipophilic cell membranes of the epithelial cells that line the GI tract. Thus more acidic molecules tend to be more readily absorbed from the stomach while more alkaline materials tend to be absorbed from the small intestine. This is because at the acidic pH of the stomach, acidic chemicals tend to be nonionized. More alkaline chemicals tend to be more ionized in the stomach and less ionized in the gut. The equilibrium reaction for acidic dissociation can be represented by this equation ... [Pg.699]

The ions that conduct the electrical current can result from a couple of sources. They may result from the dissociation of an ionically bonded substance (a salt). If sodium chloride (NaCl) is dissolved in water, it dissociates into the sodium cation (Na+) and the chloride anion (CL). But certain covalently bonded substances may also produce ions if dissolved in water, a process called ionization. For example, acids, both inorganic and organic, will produce ions when dissolved in water. Some acids, such as hydrochloric acid (HC1), will essentially completely ionize. Others, such as acetic acid (CH3COOH), will only partially ionize. They establish an equilibrium with the ions and the unionized species (see Chapter 13 for more on chemical equilibrium). [Pg.183]

The colorimetric assay of sulphadiazine is based on the acid-catalysed equilibrium reaction that occurs between vanillin (an aldehyde) and sulphadiazine (an aiylamine). The chemical species that forms as shown below is known as the Schiff s Base and is yellow in colour. [Pg.55]

Whatever the aim of a particular titration, the computation of the position of a chemical equilibrium for a set of initial conditions (e.g. total concentrations) and equilibrium constants, is the crucial part. The complexity ranges from simple 1 1 interactions to the analysis of solution equilibria between several components (usually Lewis acids and bases) to form any number of species (complexes). A titration is nothing but a preparation of a series of solutions with different total concentrations. This chapter covers all the requirements for the modelling of titrations of any complexity. Model-based analysis of titration curves is discussed in the next chapter. The equilibrium computations introduced here are the innermost functions required by the fitting algorithms. [Pg.40]

To test the validity of the extended Pitzer equation, correlations of vapor-liquid equilibrium data were carried out for three systems. Since the extended Pitzer equation reduces to the Pitzer equation for aqueous strong electrolyte systems, and is consistent with the Setschenow equation for molecular non-electrolytes in aqueous electrolyte systems, the main interest here is aqueous systems with weak electrolytes or partially dissociated electrolytes. The three systems considered are the hydrochloric acid aqueous solution at 298.15°K and concentrations up to 18 molal the NH3-CO2 aqueous solution at 293.15°K and the K2CO3-CO2 aqueous solution of the Hot Carbonate Process. In each case, the chemical equilibrium between all species has been taken into account directly as liquid phase constraints. Significant parameters in the model for each system were identified by a preliminary order of magnitude analysis and adjusted in the vapor-liquid equilibrium data correlation. Detailed discusions and values of physical constants, such as Henry s constants and chemical equilibrium constants, are given in Chen et al. (11). [Pg.66]

The limitations of the Arrhenius theory of acids and bases are overcome by a more general theory, called the Bronsted-Lowry theory. This theory was proposed independently, in 1923, by Johannes Br0nsted, a Danish chemist, and Thomas Lowry, an English chemist. It recognizes an acid-base reaction as a chemical equilibrium, having both a forward reaction and a reverse reaction that involve the transfer of a proton. The Bronsted-Lowry theory defines acids and bases as follows ... [Pg.380]

In this section, you compared strong and weak acids and bases using your understanding of chemical equilibrium, and you solved problems involving their concentrations and pH. Then you considered the effect on pH of buffer solutions solutions that contain a mixture of acid ions and base ions. In the next section, you will compare pH changes that occur when solutions of acids and bases with different strengths react together. [Pg.411]

Besides the dependence of peak potential with solution pH, there is other evidence of the acid-base and redox coupling, namely the prediction of amine deprotonation during film oxidation. Deprotonation is a response to the creation of Os(III) sites that increment the concentration of positive charges in the film. This is an example of charge regulation a chemical equilibrium at the interface is displaced as the system tries to reduce its electrostatic charge. [Pg.78]

CHEMICAL EQUILIBRIUM 4 STRONG AND WEAK ACIDS AND BASES AND THEIR SALTS... [Pg.33]

Inorganic and physical chemistry Chemical equilibrium 4 Strong and weak acids and bases and their salts... [Pg.34]


See other pages where Acids chemical equilibrium is mentioned: [Pg.55]    [Pg.44]    [Pg.1258]    [Pg.506]    [Pg.226]    [Pg.229]    [Pg.147]    [Pg.298]    [Pg.93]    [Pg.121]    [Pg.238]    [Pg.941]    [Pg.278]    [Pg.603]    [Pg.114]    [Pg.6]    [Pg.442]    [Pg.35]   
See also in sourсe #XX -- [ Pg.510 , Pg.511 , Pg.512 , Pg.513 , Pg.514 , Pg.515 ]




SEARCH



Acidizing chemicals

Chemic acid

Chemical equilibria acid-base equilibrium

Chemical equilibrium acid-base

Chemical equilibrium amino acid equilibria

Chemical equilibrium strong acid

Chemical equilibrium weak acid

Equilibrium acidity

© 2024 chempedia.info