Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium, chemical acid-base

However, the case in which the solubility of a solid can be calculated from the known analytical concentration of added components and from the solubility product alone is very seldom encountered. Ions that have dissolved from a crystalline lattice frequently undergo chemical reactions in solution, and therefore other equilibria in addition to the solubility product have to be considered. The reaction of the salt cation or anion with water to undergo acid-base reactions is very common. Furthermore, complex formation of salt cation and salt anion with each other and with one of the constituents of the solution has to be considered. For example, the solubility of FeS(s) in a sulfide-containing aqueous solution depends on, in addition to the solubility equilibrium, acid-base equilibria of the cation (e.g., Fe + H2O = FeOH + H ) and of the anion (e.g., S + HjO = HS + OH, and HS" + H2O = H2S + OH ), as well as on equilibria describing complex formation (e.g., formation of FeHS" or FeSi ). [Pg.355]

In this part of your study of general chemistry, it is typical to explore how a chemical system comes to equilibrium and how that equilibrium is represented. Interpretation of equilibrium constants, calculation of concentrations in equilibrium systems, equilibrium in gas phase reactions, relationship of enthalpy to equilibrium, acid-base equilibria, and solubility equilibria all fall into this area of study. [Pg.67]

Keywords Activated carbon Chemical treatment Adsorption Scanning electron microscopy Small-angle X-ray scattering Quasi-equilibrium acid-base titration... [Pg.80]

Acid-base reactions also allow us to examine important ideas about the relationship between the structures of molecules and their reactivity and to see how certain thermodynamic parameters can be used to predict how much of the product will be formed when a reaction reaches equilibrium. Acid-base reactions also provide an illustration of the important role solvents play in chemical reactions. They even give us a brief introduction to organic synthesis. Finally, acid-base chemistry is something that you will find familiar because of your studies in general chemistry. We begin, therefore, with a brief review. [Pg.101]

The holistic thermodynamic approach based on material (charge, concentration and electron) balances is a firm and valuable tool for a choice of the best a priori conditions of chemical analyses performed in electrolytic systems. Such an approach has been already presented in a series of papers issued in recent years, see [1-4] and references cited therein. In this communication, the approach will be exemplified with electrolytic systems, with special emphasis put on the complex systems where all particular types (acid-base, redox, complexation and precipitation) of chemical equilibria occur in parallel and/or sequentially. All attainable physicochemical knowledge can be involved in calculations and none simplifying assumptions are needed. All analytical prescriptions can be followed. The approach enables all possible (from thermodynamic viewpoint) reactions to be included and all effects resulting from activation barrier(s) and incomplete set of equilibrium data presumed can be tested. The problems involved are presented on some examples of analytical systems considered lately, concerning potentiometric titrations in complex titrand + titrant systems. All calculations were done with use of iterative computer programs MATLAB and DELPHI. [Pg.28]

In the present work, the technique of XO and MTB immobilization onto silica gel in the form of its complexes with Fe(III) and Bi(III) respectively were found. The acid - base and chemical-analytical characteristics of solid-phase reagents were examined. The optimal conditions of quantitative recovery of Pb(II) and Zn(II) from diluted solutions, such as acidity of aqueous phase, the mass of the sorbents, the volume of solutions and the time of equilibrium reaching, were found. The methods of and F" detenuination were based on a competitive reactions of Zr(IV) with immobilized MTB and or F". Optimal conditions of 0,0 and F" determination in solution using SG, modified ion associates QAS-MTB (pH = 1,5, = 5-10 mol/1). [Pg.334]

We can use this more general view to discuss the strengths of acids. In our generalized acid-base reaction (52), the proton transfer implies the chemical bond in HB, must be broken and the chemical bond in HB2 must be formed. If the HB, bond is easily broken, then HB, will be a strong acid. Then equilibrium will tend to favor a proton transfer from HB, to some other base, B2. If, on the other hand, the HB, bond is extremely stable, then this substance will be a weak acid. Equilibrium will tend to favor a proton transfer from some other acid, HB2, to base B, forming the stable HB, bond. [Pg.194]

What Do We Need to Know Already This chapter huilds on the introduction to acids and bases in Section J. It also draws on and illustrates the principles of thermodynamics (Chapters 6 and 7) and chemical equilibrium (Chapter 9). To a smaller extent, it uses the concepts of hydrogen bonding (Section 5.5), bond polarity (Section 2.12), and bond strength (Sections 2.14 and 2.15). [Pg.515]

A knowledge of the concentrations of all reactants and products is necessary for a description of the equilibrium state. However, calculation of the concentrations can be a complex task because many compounds may be Imked by chemical reactions. Changes in a variable such as pH or oxidation potential or light intensity can cause large shifts in the concentrations of these linked species. Aggregate variables may provide a means of simplifying the description of these complex systems. Here we look at two cases that involve acid-base reactions. [Pg.89]

First, the simple thermodynamic description of pe (or Eh) and pH are both most directly applicable to the liquid aqueous phase. Redox reactions can and do occur in the gas phase, but the rates of such processes are described by chemical kinetics and not by equilibrium concepts of thermodynamics. For example, the acid-base reaction... [Pg.421]

Table 16-2 List of input components for the simplest case of the acid-base balance of unpolluted marine clouds. Also shown are the mass conservation statements, chemical equilibrium expressions and constants, and the requirement for charge balance... Table 16-2 List of input components for the simplest case of the acid-base balance of unpolluted marine clouds. Also shown are the mass conservation statements, chemical equilibrium expressions and constants, and the requirement for charge balance...
In this chapter, we present basic features of chemical equilibrium. We explain why reactions such as the Haber process cannot go to completion. We also show why using catalysts and elevated temperatures can accelerate the rate of this reaction but cannot shift Its equilibrium position in favor of ammonia and why elevated temperature shifts the equilibrium In the wrong direction. In Chapters 17 and 18, we turn our attention specifically to applications of equilibria. Including acid-base chemistry. [Pg.1136]

Acid-base equilibrium is very important to inorganic chemical reactions. Adsorption-desorption and precipitation-dissolution reactions are also of major importance in assessing the geochemical fate of deep-well-injected inorganics. Interactions between and among metals in solution and solids in the deep-well environment can be grouped into four types1 2 3 4 ... [Pg.819]

In an early work by Mertz and Pettitt, an open system was devised, in which an extended variable, representing the extent of protonation, was used to couple the system to a chemical potential reservoir [67], This method was demonstrated in the simulation of the acid-base reaction of acetic acid with water [67], Recently, PHMD methods based on continuous protonation states have been developed, in which a set of continuous titration coordinates, A, bound between 0 and 1, is propagated simultaneously with the conformational degrees of freedom in explicit or continuum solvent MD simulations. In the acidostat method developed by Borjesson and Hiinenberger for explicit solvent simulations [13], A. is relaxed towards the equilibrium value via a first-order coupling scheme in analogy to Berendsen s thermostat [10]. However, the theoretical basis for the equilibrium condition used in the derivation seems unclear [3], A test using the pKa calculation for several small amines did not yield HH titration behavior [13],... [Pg.270]

One could go on with examples such as the use of a shirt rather than sand reduce the silt content of drinking water or the use of a net to separate fish from their native waters. Rather than that perhaps we should rely on the definition of a chemical equilibrium and its presence or absence. Chemical equilibria are dynamic with only the illusion of static state. Acetic acid dissociates in water to acetate-ion and hydrated hydrogen ion. At any instant, however, there is an acid molecule formed by recombination of acid anion and a proton cation while another acid molecule dissociates. The equilibrium constant is based on a dynamic process. Ordinary filtration is not an equilibrium process nor is it the case of crystals plucked from under a microscope into a waiting vial. [Pg.404]

Isoperibol titration calorimetry was also extensively used by Drago s group [215] to determine enthalpies and equilibrium constants of a variety of reactions where acid-base adducts are formed. These results are the source of Drago s ECW model, which has been widely used to rationalize chemical reactivity [216-218]. [Pg.166]

Whatever the aim of a particular titration, the computation of the position of a chemical equilibrium for a set of initial conditions (e.g. total concentrations) and equilibrium constants, is the crucial part. The complexity ranges from simple 1 1 interactions to the analysis of solution equilibria between several components (usually Lewis acids and bases) to form any number of species (complexes). A titration is nothing but a preparation of a series of solutions with different total concentrations. This chapter covers all the requirements for the modelling of titrations of any complexity. Model-based analysis of titration curves is discussed in the next chapter. The equilibrium computations introduced here are the innermost functions required by the fitting algorithms. [Pg.40]

King, E. J. "Acid-Base Equilibria in "The International Encyclopedia of Physical Chemistry and Chemical Physics Topic 15, Equilibrium Properties of Electrolyte Solutions" Vol. 4, Robinson, R. A., Ed., Pergamon Press, 1965 (distributed by The MacMillan Co., New York). ... [Pg.490]

The limitations of the Arrhenius theory of acids and bases are overcome by a more general theory, called the Bronsted-Lowry theory. This theory was proposed independently, in 1923, by Johannes Br0nsted, a Danish chemist, and Thomas Lowry, an English chemist. It recognizes an acid-base reaction as a chemical equilibrium, having both a forward reaction and a reverse reaction that involve the transfer of a proton. The Bronsted-Lowry theory defines acids and bases as follows ... [Pg.380]

In this section, you compared strong and weak acids and bases using your understanding of chemical equilibrium, and you solved problems involving their concentrations and pH. Then you considered the effect on pH of buffer solutions solutions that contain a mixture of acid ions and base ions. In the next section, you will compare pH changes that occur when solutions of acids and bases with different strengths react together. [Pg.411]

Proton transfer is one of the prominent representatives of an ion-molecule reaction in the gas phase. It is employed for the determination of GBs and PAs (Chap. 2.11.2) by either method the kinetic method makes use of the dissociation of proton-bound heterodimers, and the thermokinetic method determines the equilibrium constant of the acid-base reaction of gaseous ions. In general, proton transfer plays a crucial role in the formation of protonated molecules, e.g., in positive-ion chemical ionization mass spectrometry (Chap. 7). [Pg.60]


See other pages where Equilibrium, chemical acid-base is mentioned: [Pg.300]    [Pg.3]    [Pg.665]    [Pg.44]    [Pg.265]    [Pg.60]    [Pg.506]    [Pg.428]    [Pg.226]    [Pg.147]    [Pg.298]    [Pg.800]    [Pg.463]    [Pg.71]    [Pg.74]    [Pg.109]    [Pg.121]    [Pg.9]    [Pg.179]    [Pg.503]    [Pg.603]    [Pg.114]    [Pg.6]    [Pg.69]   
See also in sourсe #XX -- [ Pg.246 , Pg.247 , Pg.248 , Pg.249 , Pg.250 , Pg.251 , Pg.252 , Pg.253 , Pg.254 , Pg.255 , Pg.256 , Pg.257 , Pg.258 , Pg.259 ]




SEARCH



Acid-base equilibrium

Acidizing chemicals

Acids acid-base equilibrium

Acids chemical equilibrium

Bases acid-base equilibrium

Bases chemical equilibrium

Chemic acid

Chemical equilibria acid-base equilibrium

Equilibrium acid-base equilibria

Equilibrium acidity

Equilibrium bases

© 2024 chempedia.info