Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical equilibrium strong acid

The polar O-H bond of alcohols makes them weak acids. By the Bronsted-Lowry definition, acids are hydrogen ion donors and bases are hydrogen ion acceptors in chemical reactions. Strong acids are 100% ionized in water and weak acids are only partially ionized. Weak acids establish an equilibrium in water between their ionized and unionized forms. This equilibrium and the strength of an acid is described by the acidity constant, Ka. Ka is defined as the concentrations of the ionized forms of the acids (H30+ and A-) divided by the un-ionized form... [Pg.208]

We can use this more general view to discuss the strengths of acids. In our generalized acid-base reaction (52), the proton transfer implies the chemical bond in HB, must be broken and the chemical bond in HB2 must be formed. If the HB, bond is easily broken, then HB, will be a strong acid. Then equilibrium will tend to favor a proton transfer from HB, to some other base, B2. If, on the other hand, the HB, bond is extremely stable, then this substance will be a weak acid. Equilibrium will tend to favor a proton transfer from some other acid, HB2, to base B, forming the stable HB, bond. [Pg.194]

Like all chemical equilibria, this equilibrium is dynamic and we should think of protons as ceaselessly exchanging between HCN and H20 molecules, with a constant but low concentration of CN and H30+ ions. The proton transfer reaction of a strong acid, such as HCl, in water is also dynamic, but the equilibrium lies so strongly in favor of products that we represent it just by its forward reaction with a single arrow. [Pg.516]

To test the validity of the extended Pitzer equation, correlations of vapor-liquid equilibrium data were carried out for three systems. Since the extended Pitzer equation reduces to the Pitzer equation for aqueous strong electrolyte systems, and is consistent with the Setschenow equation for molecular non-electrolytes in aqueous electrolyte systems, the main interest here is aqueous systems with weak electrolytes or partially dissociated electrolytes. The three systems considered are the hydrochloric acid aqueous solution at 298.15°K and concentrations up to 18 molal the NH3-CO2 aqueous solution at 293.15°K and the K2CO3-CO2 aqueous solution of the Hot Carbonate Process. In each case, the chemical equilibrium between all species has been taken into account directly as liquid phase constraints. Significant parameters in the model for each system were identified by a preliminary order of magnitude analysis and adjusted in the vapor-liquid equilibrium data correlation. Detailed discusions and values of physical constants, such as Henry s constants and chemical equilibrium constants, are given in Chen et al. (11). [Pg.66]

In this section, you compared strong and weak acids and bases using your understanding of chemical equilibrium, and you solved problems involving their concentrations and pH. Then you considered the effect on pH of buffer solutions solutions that contain a mixture of acid ions and base ions. In the next section, you will compare pH changes that occur when solutions of acids and bases with different strengths react together. [Pg.411]

CHEMICAL EQUILIBRIUM 4 STRONG AND WEAK ACIDS AND BASES AND THEIR SALTS... [Pg.33]

Inorganic and physical chemistry Chemical equilibrium 4 Strong and weak acids and bases and their salts... [Pg.34]

PK. A measurement of the complete ness of an incomplete chemical reaction. It is defined as the negative logarithm ito the base 101 of the equilibrium constant K for the reaction in question. The pA is most frequently used to express the extent of dissociation or the strength of weak acids, particularly fatty adds, amino adds, and also complex ions, or similar substances. The weaker an electrolyte, the larger its pA. Thus, at 25°C for sulfuric add (strong acid), pK is about -3,0 acetic acid (weak acid), pK = 4.76 bone acid (very weak acid), pA = 9.24. In a solution of a weak acid, if the concentration of undissociated acid is equal to the concentration of the anion of the acid, the pAr will be equal to the pH. [Pg.1313]

Since phenol is benzene with a hydroxyl group, the reactivity of phenol and phenolic compounds is in many ways dictated by the chemical properties of the benzene ring. The first property to consider is acidity. A compound is considered an acid when it can release a proton (H ) while in solution. The acid constant Ka of a compound defines to what extent the proton is released. Strong acids will completely dissociate, whereas weak acids (HA) are at equilibrium with their dissociated state ... [Pg.38]

Nitric acid is a strong electrolyte. Therefore, the solubilities of nitrogen oxides in water given in Ref. 191 and based on Henry s law are utilized and further corrected by using the method of van Krevelen and Hofhjzer (77) for electrolyte solutions. The chemical equilibrium is calculated in terms of liquid-phase activities. The local composition model of Engels (192), based on the UNIQUAC model, is used for the calculation of vapor pressures and activity coefficients of water and nitric acid. Multicomponent diffusion coefficients in the liquid phase are corrected for the nonideality, as suggested in Ref. 57. [Pg.381]

All chemical reactions, at least in theory, are equilibrium reactions. Even the reactions of a strong acid with a strong base to produce water and a salt (Chapter 8), which we considered to proceed until the limiting reactant was used up (Section 10.4), will be shown (Section 19.3) to have a very tiny concentration of or OH (or both) remaiiung at the end of the process. [Pg.484]

Acidity constants for ionization of weak carbon acids in water caimot be determined by direct measurement when the strongly basic carbanion is too unstable to exist in detectable concentrations in this acidic solvent. Substituting dimethyl-sulfoxide (DMSO) for water causes a large decrease in the solvent acidity because, in contrast with water, the aprotic cosolvent DMSO does not provide hydrogenbonding stabilization of hydroxide ion, the conjugate base of water. This allows the determination of the pfC s of a wide range of weak carbon acids in mixed DMSO/water solvents by direct measurement of the relative concentrations of the carbon acid and the carbanion at chemical equilibrium [3, 4]. The pfC s determined for weak carbon acids in this mixed solvent can be used to estimate pfC s in water. [Pg.950]


See other pages where Chemical equilibrium strong acid is mentioned: [Pg.44]    [Pg.96]    [Pg.840]    [Pg.291]    [Pg.223]    [Pg.672]    [Pg.1134]    [Pg.906]    [Pg.174]    [Pg.312]    [Pg.313]    [Pg.316]    [Pg.48]    [Pg.82]    [Pg.61]    [Pg.338]    [Pg.21]    [Pg.122]    [Pg.672]    [Pg.1685]    [Pg.169]    [Pg.168]    [Pg.120]    [Pg.308]    [Pg.665]    [Pg.199]    [Pg.114]    [Pg.998]    [Pg.403]    [Pg.410]    [Pg.373]    [Pg.111]    [Pg.250]    [Pg.984]    [Pg.401]    [Pg.56]    [Pg.94]   
See also in sourсe #XX -- [ Pg.234 ]




SEARCH



Acidizing chemicals

Acids chemical equilibrium

Acids strong

Chemic acid

Equilibrium acidity

Strongly acidic

© 2024 chempedia.info