Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arrhenius acids and bases

Each of the three definitions expands our concept of acids and bases. Arrhenius basic definition is adequate for understanding many of the properties of acids and bases. It is important to recognize, though, that acids and bases are not fixed labels that can be applied to a substance. Bronsted-Lowry and Lewis showed that acid-base characteristics are dependent on the reactions that take place between substances. A... [Pg.159]

Arrhenius subsequently expanded his theories to form one of the most widely used and straightforward definitions of acids and bases. Arrhenius said that acids are substances that form hydrogen (H+) ions when they dissociate in water, while bases cire substances that form hydroxide (OH ) ions when they dissociate in water. [Pg.224]

Naming Acids and Bases Operational Definitions of Acids and Bases Conceptual Definition of Acids and Bases Arrhenius Acids and Bases... [Pg.139]

Arrhenius Acids and Bases Arrhenius, who was trying to discover why only certain solutions could conduct an electric current, found that conductivity arose from fhe presence of ions. In his studies of solutions, Arrhenius observed that when the substances HCl, HNO3, and H2SO4 were dissolved in water, they behaved as strong electrolytes. He suggested that this was the result of ionization reactions in water. [Pg.254]

This chapter sets the stage for all of the others by reminding us that the relationship between structure and properties is what chemistry is all about It begins with a review of Lewis structures moves to a discussion of the Arrhenius Brpnsted-Lowry and Lewis pictures of acids and bases and the effects of structure on acidity and basicity... [Pg.47]

The Br0nsted-Lowry approach to acids and bases is more generally use ful than the Arrhenius approach... [Pg.50]

The Lewis definitions of acids and bases provide for a more general view of acid-base reactions than either the Arrhenius or Br0nsted-Lowry pic ture A Lewis acid is an electron pair acceptor A Lewis base is an electron pair donor The Lewis approach incorporates the Br0nsted-Lowry approach as a subcategory m which the atom that accepts the electron pair m the Lewis acid is a proton... [Pg.50]

Hydrogen was recognized as the essential element in acids by H. Davy after his work on the hydrohalic acids, and theories of acids and bases have played an important role ever since. The electrolytic dissociation theory of S. A. Arrhenius and W. Ostwald in the 1880s, the introduction of the pH scale for hydrogen-ion concentrations by S. P. L. Sprensen in 1909, the theory of acid-base titrations and indicators, and J. N. Brdnsted s fruitful concept of acids and conjugate bases as proton donors and acceptors (1923) are other land marks (see p. 48). The di.scovery of ortho- and para-hydrogen in 1924, closely followed by the discovery of heavy hydrogen (deuterium) and... [Pg.32]

The species that give these solutions their characteristic properties are called acids and bases. In this chapter, we use the definitions first proposed by Svante Arrhenius more than a century ago. [Pg.81]

Svante Arrhenius, like Berzelius, was born in Sweden and spent his entire professional career there. According to Arrhenius, the concept of strong and weak acids and bases came to him on May 13,... [Pg.86]

Chemists debated the concepts of acid and base for many years before precise definitions emerged. Among the first useful definitions was the one proposed by the Swedish chemist Svante Arrhenius in about 1884 ... [Pg.96]

These compounds are called Arrhenius acids and bases. For instance, HCI is an Arrhenius acid, because it releases a hydrogen ion, H+ (a proton), when it dissolves... [Pg.96]

The problem with the Arrhenius definitions is that they are specific to one particular solvent, water. When chemists studied nonaqueous solvents, such as liquid ammonia, they found that a number of substances showed the same pattern of acid-base behavior, but plainly the Arrhenius definitions could not be used. A major advance in our understanding of what it means to be an acid or a base came in 1923, when two chemists working independently, Thomas Lowry in England and Johannes Bronsted in Denmark, came up with the same idea. Their insight was to realize that the key process responsible for the properties of acids and bases was the transfer of a proton (a hydrogen ion) from one substance to another. The Bronsted-Lowry definition of acids and bases is as follows ... [Pg.97]

When chemists see a pattern in the reactions of certain substances, they formulate a definition of a class of substance that captures them all. The reactions of the substances we call acids and bases are an excellent illustration of this approach. The pattern in these reactions was first identified in aqueous solutions, and led to the Arrhenius definitions of acids and bases (Section J). However, chemists discovered that similar reactions take place in nonaqueous solutions and even in the absence of solvent. The original definitions had to be replaced by more general definitions that encompassed this new knowledge. [Pg.515]

The Bronsted definitions of acids and bases are more general than the Arrhenius definitions they also apply to species in nonaqueous solvents and even to gas-phase reactions. For example, when pure acetic acid is added to liquid ammonia, proton transfer takes place and the following equilibrium is reached ... [Pg.518]

A note on good practice The entities that are regarded as acids and bases are different in each theory. In the Lewis theory, the proton is an acid in the Bronsted theory, the species that supplies the proton is the acid. In both the Lewis and Bronsted theories, the species that accepts a proton is a base in the Arrhenius theory, the species that supplies the proton acceptor is the base (Fig. 10.61. [Pg.519]

The first substantial constitutive concept of acid and bases came only in 1887 when Arrhenius applied the theory of electrolytic dissociation to acids and bases. An acid was defined as a substance that dissociated to hydrogen ions and anions in water (Day Selbin, 1969). For the first time, a base was defined in terms other than that of an antiacid and was regarded as a substance that dissociated in water into hydroxyl ions and cations. The reaction between an acid and a base was simply the combination of hydrogen and hydroxyl ions to form water. [Pg.14]

This theory was a milestone in the development of acid-base concepts it was the first to define acids and bases in terms other than that of a reaction between them and the first to give quantitative descriptions. However, the theory of Arrhenius is far more narrow than both its predecessors and its successors and, indeed, it is the most restrictive of all acid-base theories. [Pg.14]

Since Arrhenius, definitions have extended the scope of what we mean by acids and bases. These theories include the proton transfer definition of Bronsted-Lowry (Bronsted, 1923 Lowry, 1923a,b), the solvent system concept (Day Selbin, 1969), the Lux-Flood theory for oxide melts, the electron pair donor and acceptor definition of Lewis (1923, 1938) and the broad theory of Usanovich (1939). These theories are described in more detail below. [Pg.14]

Thus, acids and bases are defined as aqueous solutions of substances and not as the substances themselves. It follows that ionization is a necessary characteristic of Arrhenius acids and bases. Another restriction of this definition is that acid-base behaviour is not recognized in non-aqueous solution. [Pg.15]

Thus, the relationship between acid and base is a reciprocal one and an acid-base reaction involves the transfer of a proton. This concept is not restricted to aqueous solutions and it discards Arrhenius prerequisite of ionization. [Pg.15]

The theory of electrolytic dissociation also provided the possibility for a transparent definition of the concept of acids and bases. According to the concepts of Arrhenius, an acid is a substance which upon dissociation forms hydrogen ions, and a base is a substance that forms hydroxyl ions. Later, these concepts were extended. [Pg.105]

There are certain limitations of the Arrhenius concept of acids and bases. Acids and bases have been described in terms of their aqueous solutions and not in terms of the entities themselves. The theory is thus applicable exclusively to aqueous solutions. An entity such as HC1 is accounted as an acid only when it is dissolved in water if dissolved in... [Pg.587]

Any text on acids and bases would not be deemed complete if mention were not made of the extended definition of acids and bases that is embodied in the Lowry-Bronsted theory. The theory basically proposed a more general definition of acids and bases to overpower the limitations of the theory arising from the Arrhenius concept. [Pg.588]

It was G. N. Lewis who extended the definitions of acids and bases still further, the underlying concept being derived from the electronic theory of valence. It provided a much broader definition of acids and bases than that provided by the Lowry-Bronsted concept, as it furnished explanations not in terms of ionic reactions but in terms of bond formation. According to this theory, an acid is any species that is capable of accepting a pair of electrons to establish a coordinate bond, whilst a base is any species capable of donating a pair of electrons to form such a coordinate bond. A Lewis acid is an electron pair acceptor, while a Lewis base is an electron pair donor. These definitions of acids and bases fit the Lowry-Bronsted and Arrhenius theories, and cover many other substances which could not be classified as acids or bases in terms of proton transfer. [Pg.592]

Arrhenius postulated in 1887 that an appreciable fraction of electrolyte in water dissociates to free ions, which are responsible for the electrical conductance of its aqueous solution. Later Kohlrausch plotted the equivalent conductivities of an electrolyte at a constant temperature against the square root of its concentration he found a slow linear increase of A with increasing dilution for so-called strong electrolytes (salts), but a tangential increase for weak electrolytes (weak acids and bases). Hence the equivalent conductivity of an electrolyte reaches a limiting value at infinite dilution, defined as... [Pg.29]

Robert Boyle (1627-1691), an Irish chemist, was the first person to classify certain chemicals as either acids or bases. Boyle based his classifications on their properties. He was unable to explain, however, why acids and bases have the properties that they do. It would be another 200 years before a scientist came along to answer that question. That scientist was the Swedish chemist Svante Arrhenius (1859-1927). [Pg.15]

So, Arrhenius defined an acid as any substance that releases hydrogen ions (H+) when it is dissolved in water. He defined a base as any substance that releases hydroxide ions (OH"). This would explain why acids all have similar properties—because they all release H+ ions. It also explains the similarities among bases. All bases, according to Arrhenius definition, release OH" ions. It also explains why water forms when acids and bases are mixed . [Pg.18]

Arrhenius theory explained a lot about acids and bases, but it did not explain everything. Not all bases release hydroxide ions. In fact, one of the most commonly used bases—baking soda... [Pg.18]

The Bronsted-Lowry definition of an acid is essentially the same as Arrhenius idea An acid is any substance that releases a hydrogen ion. Their idea has come to be known as the Bronsted-Lowry theory of acids and bases. [Pg.20]

Arrhenius also formulated the first rational definition of acids and bases ... [Pg.23]

Thus far, we have used the Arrhenius theory of acids and bases (Secs. 6.4 and 7,3) in which acids are defined as hydrogen-containing compounds that react with bases. Bases are compounds containing OH" ions or that form OH- ions when they react with water. Bases react with acids to form salts and water. Metallic hydroxides and ammonia are the most familiar bases to us. [Pg.302]

The Br0nsted theory expands the definition of acids and bases to allow us to explain much more of solution chemistry. For example, the Brpnsted theory allows us to explain why a solution of ammonium chloride tests acidic and a solution of sodium acetate tests basic. Most of the substances that we consider acids in the Arrhenius theory are also acids in the Bronsted theory, and the same is true of bases. In both theories, strong acids are those that react completely with water to form ions. Weak acids ionize only slightly. We can now explain this partial ionization as an equilibrium reaction of the ions, the weak acid, and the water. A similar statement can be made about weak bases ... [Pg.302]

Arrhenius theory theory of acids and bases in which acids are defined as hydrogen-containing compounds that react with bases. [Pg.350]

If solutions that contain other ionized acids and bases are mixed, the reaction is still one that occurs between the H30+(aq) and Oil (aq). Therefore, the neutralization reaction between an acid and a base is that shown in Eq. (9.5) according to the Arrhenius theory. [Pg.292]

According to the Arrhenius theory of acids and bases, the acidic species in water is the solvated proton (which we write as H30+). This shows that the acidic species is the cation characteristic of the solvent. In water, the basic species is the anion characteristic of the solvent, OH-. By extending the Arrhenius definitions of acid and base to liquid ammonia, it becomes apparent from Eq. (10.3) that the acidic species is NH4+ and the basic species is Nl I,. It is apparent that any substance that leads to an increase in the concentration of NH4+ is an acid in liquid ammonia. A substance that leads to an increase in concentration of NH2- is a base in liquid ammonia. For other solvents, autoionization (if it occurs) leads to different ions, but in each case presumed ionization leads to a cation and an anion. Generalization of the nature of the acidic and basic species leads to the idea that in a solvent, the cation characteristic of the solvent is the acidic species and the anion characteristic of the solvent is the basic species. This is known as the solvent concept. Neutralization can be considered as the reaction of the cation and anion from the solvent. For example, the cation and anion react to produce unionized solvent ... [Pg.333]

At the microscopic level, the Arrhenius theory defines acids as substances which, when dissolved in water, yield the hydronium ion (H30+) or H+(aq). Bases are defined as substances which, when dissolved in water, yield the hydroxide ion (OH). Acids and bases may be strong (as in strong electrolytes), dissociating completely in water, or weak (as in weak electrolytes), partially dissociating in water. (We will see the more useful Brpnsted-Lowry definitions of acids and bases in Chapter 15.) Strong acids include ... [Pg.54]

Our goal in this chapter is to help you understand the equilibrium systems involving acids and bases. If you don t recall the Arrhenius acid-base theory, refer to Chapter 4 on Aqueous Solutions. You will learn a couple of other acid-base theories, the concept of pH, and will apply those basic equilibrium techniques we covered in Chapter 14 to acid-base systems. In addition, you will need to be familiar with the log and 10 functions of your calculator. And, as usual, in order to do well you must Practice, Practice, Practice. [Pg.220]


See other pages where Arrhenius acids and bases is mentioned: [Pg.3]    [Pg.265]    [Pg.265]    [Pg.3]    [Pg.265]    [Pg.265]    [Pg.32]    [Pg.515]    [Pg.32]    [Pg.1028]    [Pg.99]    [Pg.15]    [Pg.53]    [Pg.292]    [Pg.150]   
See also in sourсe #XX -- [ Pg.32 , Pg.49 ]

See also in sourсe #XX -- [ Pg.32 , Pg.49 ]

See also in sourсe #XX -- [ Pg.32 , Pg.49 ]




SEARCH



Acidity Arrhenius

Acids Arrhenius

Acids Arrhenius acid

Acids and Bases The Arrhenius View

Arrhenius concept of acids and bases

Arrhenius definition of acids and bases

Arrhenius model of acids and bases

Arrhenius theory of acids and bases

Bases Arrhenius acid

Hydroxide ion Arrhenius acid-base definition and

Skill 10.1 Analyzing acids and bases according to acid-base theories (i.e., Arrhenius, Bronsted-Lowry, Lewis)

The Arrhenius Theory of Acids and Bases (Optional)

© 2024 chempedia.info