Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid-forming

CH3C(0)CH2Br. Colourless liquid which rapidly becomes violet in colour it is a powerful lachrymator b.p. 1367725 mm. Manufactured by treating aqueous propanone with bromine at 30-40 C it is usual to add sodium chlorate(V) to convert the hydro-bromic acid formed by the reaction back to bromine. It is not very stable and decomposes on standing. [Pg.68]

H0S(0)200S(0)20H. Dibasic acid formed as salts by electrolysis of sulphates at low temperatures and high current density. The acid and persulphates are strong oxidizing agents ( "[S20a] to S04 -t-2 01 volts in acid) but the reactions are often slow. Compare permonosulphuric acid. [Pg.301]

CsHsO. Colourless, crystalline solid m.p. 115 C. Prepared by the dry distillation of tartaric acid or by reduction of itaconic or cilra-conic acids. Forms an anhydride when heated to 200"C. [Pg.336]

HOOC-[CHa]8-COOH, CioH.aO. Colourless leaflets m.p. 134°C. Manufactured by heating castor oil with alkalis or by distillation of oleic acid. Forms an anhydride, m.p. 78 C. The esters of sebacic acid are used as plasticizers, especially for vinyl resins. [Pg.354]

Racemic acid, ( )-tartaric acid, is a compound of the two active forms. M.p. 273 C (with IHjO), m.p. 205°C (anhydrous). Less soluble in water than (-t-)-tartaric acid. Formed, together with mesotartaric acid, by boiling (4-)-tartaric acid with 30% NaOH solution, or by oxidation of fumaric acid. Potassium hydrogen racemate is very insoluble. [Pg.385]

Because of the charged nature of many Langmuir films, fairly marked effects of changing the pH of the substrate phase are often observed. An obvious case is that of the fatty-acid monolayers these will be ionized on alkaline substrates, and as a result of the repulsion between the charged polar groups, the film reverts to a gaseous or liquid expanded state at a much lower temperature than does the acid form [121]. Also, the surface potential drops since, as illustrated in Fig. XV-13, the presence of nearby counterions introduces a dipole opposite in orientation to that previously present. A similar situation is found with long-chain amines on acid substrates [122]. [Pg.557]

Arsenic dissolves in concentrated nitric acid forming arsenicfV) acid, H3ASO4, but in dilute nitric acid and concentrated sulphuric acid the main product is the arsenic(III) acid, HjAsOj. The more metallic element, antimony, dissolves to form the (III) oxide Sb O, with moderately concentrated nitric acid, but the (V) oxide Sb205 (structure unknown) with the more concentrated acid. Bismuth, however, forms the salt bismulh(lll) nitrate Bi(N03)3. 5H,0. [Pg.212]

The base pyridine removes the hydriodic acid formed. The endpoint occurs when the brown colour of free iodine is seen, i.e. when all the water has been used up. This method is widely used. [Pg.276]

More iodate is then added, and with the sulphuric acid formed (or added if sodium sulphite is used), iodine is liberated ... [Pg.319]

Recent work indicates the existence offluoric I) acid. HFO, formed by the reaction of fluorine and water at 273 K. The acid forms colourless crystals, m.p. 156 K. is very unstable, and has, as expected, very strong oxidising properties. [Pg.323]

The amount of halic(I) acid formed when the halogen reacts reversibly with water decreases from chlorine to iodine and the concentration of iodic(I) acid in a saturated solution of iodine is negligible. However the equilibrium... [Pg.337]

Manganese(IV) oxide is a dark-brown solid, insoluble in water and dilute acids. Its catalytic decomposition of potassium chlor-ate(V) and hydrogen peroxide has already been mentioned. It dissolves slowly in alkalis to form manganates(lW), but the constitution of these is uncertain. It dissolves in ice-cold concentrated hydrochloric acid forming the complex octahedral hexachloromangan-ate(IV) ion ... [Pg.387]

The solid readily dissolves chemically in concentrated hydrochloric acid, forming a complex, and in ammonia as the colourless, linear, complex cation [H3N -> Cu <- NHj] (cf AgCl) if air is absent (in the presence of air, this is oxidis to a blue ammino-copper(II) complex). This solution of ammoniacal copper(I) chloride is a good solvent or carbon monoxide, forming an addition compound CuCl. CO. H2O, and as such is used in gas analysis. On passing ethyne through the ammoniacal solution, a red-brown precipitate of hydrated copper(I) dicarbide (explosive when dry) is obtained ... [Pg.415]

In reactions (b) and (c) the hydrochloric and acetic acids formed are of course at once neutralised by the excess of ammonia. [Pg.117]

The characteristic property of aliphatic nitrocompounds of the type RCHiKOj and RjCHNO, is that they are pseiido cids, I. e., whereas they are neutral in the normal form (A), they are able by tautomeric change under the influence of alkali to give the acidic hydroxy form (B) which thus in turn gives the sodium salt (C). When this sodium salt is treated with one equivalent of hydrochloric acid, the acid form (B) is at once regenerated, and then more slowly reverts to the more stable normal form (A). [Pg.131]

Phenylhydrazine is, however, frequently supplied in the form of its hydro chloride or sulphate, since these salts on exposure to light darken less rapidly than the free base. If these salts are used, however, osazone formation is unsatisfactory, partly because the mineral acid formed by hydrolysis of... [Pg.138]

Brominarion of the aromatic nucleus is now regarded as replacement of a hydrogen atom of the intact nucleus as a result of an attack by a polarised complex with a positive end. Iron acts as a carrier by forming FcBrj, which as a Lewis acid forms a polarised complex with one mol. of Bri ... [Pg.175]

Dissolve 15 ml. (15-4 g.) of aniline in a mixture of 40 ml. of concentrated hydrochloric acid and 40 ml. of water contained in a 250 ml. conical flask. Place a thermometer in the solution, immerse the flask in a mixture of ice and water, and cool until the temperature of the stirred solution reaches 5°. Dissolve I2 5 g. of powdered sodium nitrite in 30 ml. of water, and add this solution in small quantities (about 2-3 ml. at a time) to the cold aniline hydrochloride solution, meanwhile keeping the latter well stirred by means of a thermometer. Heat is evolved by the reaction, and therefore a short interval should be allowed between consecutive additions of the sodium nitrite, partly to allow the temperature to fall again to 5°, and partly to ensure that the nitrous acid formed reacts as completely as possible with the aniline. The temperature must not be allowed to rise above 10°, otherwise appreciable decomposition of the diazonium compound to phenol will occur on the other hand, the temperature... [Pg.184]

Hence benzoic acid forms bi-molecular associates in benzene solution. [Pg.442]

It is rather slow at moderate temperatures sind the hydrobromic acid formed in the initial stages of the resLCtion inhibits its further progress. By carrying out the reaction at 60-70 or above in the presence of a large excess of water, the inhibition observed at lower temper, atuies does not occur. [Pg.187]

The acetic acid formed can often be used for the crystallisation of the anhydride. [Pg.371]

The reaction commences at about 120° the carbamic acid formed decomposes immediately into carbon dioxide and ammonia. The latter may form the ammonium salt with unreacted acid the ammonium salt also reacts with urea at temperatures above 120° to yield the amide ... [Pg.401]

An alternative procedure for the above test is as follows. Mix 2-3 ml. of 2 per cent, aqueous paraperiodic acid solution with 1 drop of dilute sulphuric acid (ca. 2 5N) and add 20-30 mg. of the compound. Shake the mixture for 5 minutes, and then pass sulphur dioxide through the solution until it acquires a pale yellow colour (to remove the excess of periodic acid and also iodic acid formed in the reaction). Add 1-2 ml. of Schiff s reagent (Section 111,70) the production of a violet colour constitutes a positive test. [Pg.447]


See other pages where Acid-forming is mentioned: [Pg.81]    [Pg.131]    [Pg.166]    [Pg.184]    [Pg.191]    [Pg.193]    [Pg.194]    [Pg.213]    [Pg.248]    [Pg.328]    [Pg.342]    [Pg.376]    [Pg.395]    [Pg.414]    [Pg.734]    [Pg.241]    [Pg.247]    [Pg.305]    [Pg.420]    [Pg.52]    [Pg.521]    [Pg.180]    [Pg.501]    [Pg.453]    [Pg.624]    [Pg.765]    [Pg.767]   


SEARCH



© 2024 chempedia.info