Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetophenone oxidation

Enols are more reactive than ketones and acids accelerate enolization of ketones. Therefore, in the presence of acids and oxidizing ions, oxidation of ketone proceeds via its enolic form. Kooymen and coworkers [171,172] have found that, at 130° C in the presence of manganese acetate, acetophenone oxidizes in acetic and butyric acids at a rate equal to that of enolization. A linear dependence of log k on a (p = —0.7) was observed for the oxidation of a number of substituted acetophenones. The proposed mechanism is... [Pg.167]

Products of degradation hydrcpercxides, acetophenone, oxidation products, disccicraticn, chain scission Luengo, C Allen, N S Wilkinson, A Edge, M Parellada, M D Barrio, J A Santa, V R, J. Vinyl Addit. Technol., 12, 2-7, 2006. [Pg.671]

Oxidation of acetophenone with selenium dioxide iu the i)reseiice of dioxan or ethyl alcohol as solvent affords j.henylglyoxal ... [Pg.866]

Various 4-, 5-, or 4,5-disubstituted 2-aryIamino thiazoles (124), R, = QH4R with R = 0-, m-, or p-Me, HO C, Cl, Br, H N, NHAc, NR2, OH, OR, or OjN, were obtained by condensing the corresponding N-arylthiourea with chloroacetone (81, 86, 423), dichloroacetone (510, 618), phenacyichloride or its p-substituted methyl, f-butyl, n-dodecyl or undecyl (653), or 2-chlorocyclohexanone (653) (Method A) or with 2-butanone (423), acetophenone or its p-substituted derivatives (399, 439), ethyl acetate (400), ethyl acetyl propionate (621), a- or 3-unsaturated ketones (691), benzylidene acetone, furfurylidene acetone, and mesityl oxide in the presence of Btj or Ij as condensing agent (Method B) (Table 11-17). [Pg.233]

The yield of acetone from the cumene/phenol process is beUeved to average 94%. By-products include significant amounts of a-methylstyrene [98-83-9] and acetophenone [98-86-2] as well as small amounts of hydroxyacetone [116-09-6] and mesityl oxide [141-79-7]. By-product yields vary with the producer. The a-methylstyrene may be hydrogenated to cumene for recycle or recovered for monomer use. Yields of phenol and acetone decline by 3.5—5.5% when the a-methylstyrene is not recycled (21). [Pg.96]

Sales demand for acetophenone is largely satisfied through distikative by-product recovery from residues produced in the Hock process for phenol (qv) manufacture. Acetophenone is produced in the Hock process by decomposition of cumene hydroperoxide. A more selective synthesis of acetophenone, by cleavage of cumene hydroperoxide over a cupric catalyst, has been patented (341). Acetophenone can also be produced by oxidizing the methylphenylcarbinol intermediate which is formed in styrene (qv) production processes using ethylbenzene oxidation, such as the ARCO and Halcon process and older technologies (342,343). [Pg.501]

A typical phenol plant based on the cumene hydroperoxide process can be divided into two principal areas. In the reaction area, cumene, formed by alkylation of benzene and propylene, is oxidized to form cumene hydroperoxide (CHP). The cumene hydroperoxide is concentrated and cleaved to produce phenol and acetone. By-products of the oxidation reaction are acetophenone and dimethyl benzyl alcohol (DMBA). DMBA is dehydrated in the cleavage reaction to produce alpha-methylstyrene (AMS). [Pg.288]

Oxidation of cumene to cumene hydroperoxide is usually achieved in three to four oxidizers in series, where the fractional conversion is about the same for each reactor. Fresh cumene and recycled cumene are fed to the first reactor. Air is bubbled in at the bottom of the reactor and leaves at the top of each reactor. The oxidizers are operated at low to moderate pressure. Due to the exothermic nature of the oxidation reaction, heat is generated and must be removed by external cooling. A portion of cumene reacts to form dimethylbenzyl alcohol and acetophenone. Methanol is formed in the acetophenone reaction and is further oxidized to formaldehyde and formic acid. A small amount of water is also formed by the various reactions. The selectivity of the oxidation reaction is a function of oxidation conditions temperature, conversion level, residence time, and oxygen partial pressure. Typical commercial yield of cumene hydroperoxide is about 95 mol % in the oxidizers. The reaction effluent is stripped off unreacted cumene which is then recycled as feedstock. Spent air from the oxidizers is treated to recover 99.99% of the cumene and other volatile organic compounds. [Pg.288]

The most widely used process for the production of phenol is the cumene process developed and Hcensed in the United States by AHiedSignal (formerly AHied Chemical Corp.). Benzene is alkylated with propylene to produce cumene (isopropylbenzene), which is oxidized by air over a catalyst to produce cumene hydroperoxide (CHP). With acid catalysis, CHP undergoes controUed decomposition to produce phenol and acetone a-methylstyrene and acetophenone are the by-products (12) (see Cumene Phenol). Other commercial processes for making phenol include the Raschig process, using chlorobenzene as the starting material, and the toluene process, via a benzoic acid intermediate. In the United States, 35-40% of the phenol produced is used for phenoHc resins. [Pg.292]

Ethers of benzenepentol have been obtained by Dakin oxidation of the appropriately substituted acetophenone. Thus, the oxidation of 2-hydroxy-3,4,6-ttimethoxyacetophenone and 2-hydroxy-3,4,5-ttimethoxyacetophenone with hydrogen peroxide ia the presence of alkali gives l,2-dihydroxy-3,4,6-ttimethoxybenzene and l,2-dihydroxy-3,4,5-ttimethoxybenzene, respectively further methylation of these ethers yields the pentamethyl ether of benzenepentol (mp 58—59 degC) (253). The one-step aromatization of myoinositol to produce esters of pentahydroxybenzene is achieved by treatment with carboxylic acid anhydrides ia DMSO and ia the presence of pyridine (254) (see Vitamins). 6-Alkyl- or... [Pg.389]

Ethylbenzene Hydroperoxide Process. Figure 4 shows the process flow sheet for production of propylene oxide and styrene via the use of ethylbenzene hydroperoxide (EBHP). Liquid-phase oxidation of ethylbenzene with air or oxygen occurs at 206—275 kPa (30—40 psia) and 140—150°C, and 2—2.5 h are required for a 10—15% conversion to the hydroperoxide. Recycle of an inert gas, such as nitrogen, is used to control reactor temperature. Impurities ia the ethylbenzene, such as water, are controlled to minimize decomposition of the hydroperoxide product and are sometimes added to enhance product formation. Selectivity to by-products include 8—10% acetophenone, 5—7% 1-phenylethanol, and <1% organic acids. EBHP is concentrated to 30—35% by distillation. The overhead ethylbenzene is recycled back to the oxidation reactor (170—172). [Pg.139]

A three-step process involving the oxidation of acetophenone, hydrogenation of the ketone to a-phenylethanol, and dehydration of the alcohol to styrene was practiced commercially by Union Carbide (59) until the early 1960s. Other technologies considered during the infancy of the styrene industry include side-chain chlorination of ethylbenzene followed by dehydrochlotination or followed by hydrolysis and dehydration. [Pg.485]

Dihalo-5-fluoroben/oic acids, obtained by oxidation of the corresponding acetophenones, have received considerable attention as intermediates for antibac-tenal fluoroquinolones [3reacts with acetyl chloride to give 2,4,5-trifluoroacetophenone [29] (equation 19) 1,3,5-Tn-fluorobenzene and 1,2-difluorobenzene yield 2,4,6-trifluoroacetophenone and 3,4-difluoroacetophenone, respectively [30] (equations 20 and 21). [Pg.414]

Besides acetophenone, this reaction was also applied to p-chloro- andp-methoxyacetophenone, and even to an aliphatic ketone, acetone (although the yield was stated to be only half as large as that obtained from mesityl oxide, i.e., less than 30%, Dorofeenko and co-workers reported a 45% yield of 2,4,6-trimethylpyrylium perchlorate from acetone, acetic anhydride, and perchloric acid), and is the standard method for preparing pyrylium salts with identical substituents in positions 2 and 4. The acylating agent may be an anhydride in the presence of anhydrous or hydrated ferric chloride, or of boron fluoride, or the acid chloride with ferric chloride.Schneider and co-workers ... [Pg.309]

Tetraazafulvalenes bearing two pyrazole subunits could be prepared by an original way. Tlius, treatment of benzylidene acetophenone with iso-pentylnitrite leads to an A, A -dihydroxy-bipyrazolyl-A, A -oxide, which in turn can be oxidized to TAF of type 100 (72CC961, 79JOC3211). Another type of oxidative dimerization was observed by the reaction of the electron-rich l-methyl-2,4-bis(dimethylamino)imidazole with silver salts (83TL3563). A bis-cation was isolated in 30% yield in the presence of sodium tetrafluo-roborate an unsymmetrical structure 101 was predicted from its NMR data (Scheme 40). [Pg.145]

Platinum, especially as platinum oxide, has been used by many investigators. If this catalyst contains residual alkali, it is apt to be ineffective for aromatic ring reduction unless an acidic solvent is used (1,3,19) or unless the compound also contains a carbonyl group, as in acetophenone, where 1,4-and 1,6-addition are possible (46). Nickel, unless especially active, requires vigorous conditions—conditions that may promote side reactions. [Pg.118]

In the hydrogenation, 200 g of acetophenone azine, 1000 ml of EtOAc and 5 g of 10% Pd-on-C was shaken at 30-50 psig for 10 h. Hydrogen absorption had ceased. About 7.6 g of phenylethylamine, formed by cleavage of the N—N bond, was obtained as a by-product. Oxidation of hydrazines can be done catalytically. Ethyl 2-arylhydrazine carboxylates were oxidized easily by bubbling air at 25 "C through a toluene or dioxane solution in the presence of Pd or Pt (5d). [Pg.170]

Phenoxy acetophenone, 46, 94 Phenylacetyleue, oxidative coupling to diphenyldiacetylene, 46, 39 partial reduction to styrene using palladium catalyst, 46, 90 reaction with sodium hypobromite to yield phenylbromoethyne, 46,86... [Pg.135]

Benzylacetophenone has been prepared by the reduction of benzalacetophenone with zinc and acetic acid1 and catalytic-ally with palladium and hydrogen 2 by the reduction of /3-duplo-benzylidene acetophenone monosulfide 3 by the oxidation of the corresponding car bind with chromic acid 4 by the hydrolysis of ethyl benzyl benzoylacetate 5 from acetophenone and benzyl chloride by the action of sodamide 6 and from benzoic and hydrocinnamic adds using as catalysts manganese oxide 7 and ferric oxide.8... [Pg.37]

Ethyl benzoylformate has been prepared by the direct esterification of the acid 1 and by the action of oxides of nitrogen on an alcoholic suspension of indigo.2 The acid has been prepared by many different reactions but the most practical are the hydrolysis of benzoyl cyanide,3 the oxidation of acetophenone 4 and the oxidation of mandelic acid.5... [Pg.72]

Although enolates, their equivalents, and otherwise stabilized carbanions would be interesting candidates for ARO of weso-epoxides, no efficient catalytic method has been developed to date. Crotti reported that 20 mol% of (salen)Cr-Cl complex 2 promoted the addition of the lithium enolate of acetophenone to cyclohexene oxide with moderate ees (Scheme 7.26) [50], However, the very low yields obtained... [Pg.246]

The reaction scheme is rather complex also in the case of the oxidation of o-xylene (41a, 87a), of the oxidative dehydrogenation of n-butenes over bismuth-molybdenum catalyst (87b), or of ethylbenzene on aluminum oxide catalysts (87c), in the hydrogenolysis of glucose (87d) over Ni-kieselguhr or of n-butane on a nickel on silica catalyst (87e), and in the hydrogenation of succinimide in isopropyl alcohol on Ni-Al2Oa catalyst (87f) or of acetophenone on Rh-Al203 catalyst (87g). Decomposition of n-and sec-butyl acetates on synthetic zeolites accompanied by the isomerization of the formed butenes has also been the subject of a kinetic study (87h). [Pg.24]


See other pages where Acetophenone oxidation is mentioned: [Pg.147]    [Pg.63]    [Pg.379]    [Pg.328]    [Pg.4972]    [Pg.4973]    [Pg.147]    [Pg.63]    [Pg.379]    [Pg.328]    [Pg.4972]    [Pg.4973]    [Pg.11]    [Pg.163]    [Pg.260]    [Pg.176]    [Pg.477]    [Pg.387]    [Pg.79]    [Pg.25]    [Pg.26]    [Pg.27]    [Pg.277]    [Pg.297]    [Pg.278]    [Pg.86]    [Pg.112]    [Pg.507]    [Pg.13]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Acetophenone oxidative rearrangement

Acetophenone oximes oxidation

Acetophenone, electrochemical oxidation

Acetophenone: acylation oxidation

Acetophenones platinum oxide catalyst

Acetophenones substituted. oxidation

Acetophenones, oxidation

Acetophenones, oxidation

Oxidation acetophenone synthesis

Oxidation of acetophenones

© 2024 chempedia.info