Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetophenone butylation

Mesityl oxide Methyl benzoate Nitroethane Propyl alcohol Propylene dichloride Tetrahydrofurfuryl alcohol Trichloroethylene solvent, cellulose ethers Acetone oxime Acetophenone Butyl benzoate Butyl formate Cyclohexane Cyclohexyl acetate Dibutyl tartrate Diethyl oxalate Epichlorohydrin Ethyl butyrate Ethylene glycol diacetate Ethyl-(S)-lactate Ethyl propionate Isopropyl butyrate Mesityl oxide... [Pg.5688]

Good solvent - acetone, acetophenone, butyl acetate, chlorobenzene, cyclohexanone, diethyl ether, MEK, THF ... [Pg.656]

Various 4-, 5-, or 4,5-disubstituted 2-aryIamino thiazoles (124), R, = QH4R with R = 0-, m-, or p-Me, HO C, Cl, Br, H N, NHAc, NR2, OH, OR, or OjN, were obtained by condensing the corresponding N-arylthiourea with chloroacetone (81, 86, 423), dichloroacetone (510, 618), phenacyichloride or its p-substituted methyl, f-butyl, n-dodecyl or undecyl (653), or 2-chlorocyclohexanone (653) (Method A) or with 2-butanone (423), acetophenone or its p-substituted derivatives (399, 439), ethyl acetate (400), ethyl acetyl propionate (621), a- or 3-unsaturated ketones (691), benzylidene acetone, furfurylidene acetone, and mesityl oxide in the presence of Btj or Ij as condensing agent (Method B) (Table 11-17). [Pg.233]

The methylhydrazone of acetophenone (112) underwent ready reaction with n-butyl-lithium giving the dianion (113) reaction with acid derivatives such acid chlorides or esters resulted in pyrazole (114) formation whereas with aldehydes, pyrazolines were obtained (76SC5). With dichloromethyleneiminium salts (115), 5-dimethylaminopyrazoles... [Pg.125]

Benoxinate hydrochloride Bumetanide Fluocortin butyl Pentobarbitol sodium p-n-Butoxy acetophenone Dyclonine HCI Butoxybenzyl bromide Butropium bromide 7-[D-0 -tert-Butoxycarbonylamino-a -... [Pg.1618]

The reaction scheme is rather complex also in the case of the oxidation of o-xylene (41a, 87a), of the oxidative dehydrogenation of n-butenes over bismuth-molybdenum catalyst (87b), or of ethylbenzene on aluminum oxide catalysts (87c), in the hydrogenolysis of glucose (87d) over Ni-kieselguhr or of n-butane on a nickel on silica catalyst (87e), and in the hydrogenation of succinimide in isopropyl alcohol on Ni-Al2Oa catalyst (87f) or of acetophenone on Rh-Al203 catalyst (87g). Decomposition of n-and sec-butyl acetates on synthetic zeolites accompanied by the isomerization of the formed butenes has also been the subject of a kinetic study (87h). [Pg.24]

Potassium or lithium derivatives of ethyl acetate, dimethyl acetamide, acetonitrile, acetophenone, pinacolone and (trimethylsilyl)acetylene are known to undergo conjugate addition to 3-(t-butyldimethylsiloxy)-1 -cyclohexenyl t-butyl sulfone 328. The resulting a-sulfonyl carbanions 329 can be trapped stereospecifically by electrophiles such as water and methyl iodide417. When the nucleophile was an sp3-hybridized primary anion (Nu = CH2Y), the resulting product was mainly 330, while in the reaction with (trimethylsilyl)acetylide anion the main product was 331. [Pg.646]

The comparison of a bis(imino)pyridine iron complex and a pyridine bis (oxazoline) iron complex in hydrosilylation reactions is shown in Scheme 24 [73]. Both iron complexes showed efficient activity at 23°C and low to modest enantioselectivites. However, the steric hindered acetophenone derivatives such as 2, 4, 6 -trimethylacetophenone and 4 -ferf-butyl-2, 6 -dimethylacetophenone reacted sluggishly. The yields and enantioselectivities increased slightly when a combination of iron catalyst and B(CeF5)3 as an additive was used. [Pg.49]

Carbanions derived from optically active sulfoxides react with esters, affording generally optically active )S-ketoesters ° . Kunieda and coworkers revealed that treatment of (-t-)-(R)-methyl p-tolyl sulfoxide 107 with n-butyllithium or dimethy-lamine afforded the corresponding carbanion, which upon further reaction with ethyl benzoate gave (-l-)-(R)-a-(p-tolylsulfinyl)acetophenone 108. They also found that the reaction between chiral esters of carboxylic acids (R COOR ) and a-lithio aryl methyl sulfoxides gave optically active 3-ketosulfoxides The stereoselectivity was found to be markedly influenced by the size of the R group of the esters and the optical purity reached to 70.3% when R was a t-butyl group. [Pg.610]

If, on the other hand, unsymmetrically substituted carbonyl compounds such as monosubstituted benzophenones (X = OCH3, CH3, Cl), tert-butyl methyl ketone, acetophenone, acetaldehyde, or benzaldehyde are used for trapping 39a, diastere-omeric mixtures are formed in each case they could all be resolved except for the products obtained with p-methoxybenzophenone and acetophenone 33>. An X-ray structure analysis has been performed for the E-isomer 57g 36) which, in conjunction with H-NMR studies, permitted structural assignment in cases 56 and 57e, g and h35>. Additional chemical evidence for the structure of the six-membered heterocycles is provided by the thermolysis of 56 a considered in another context (see Sect. 3.1). In general the reaction 39a- 56 or 57 is accompanied by formation of phosphene dimers, presumably via [4 + 4]- and via [4 + 2]-cycloaddition 35). [Pg.86]

Condensation reactions are conveniently written as carbanion reactions, and yet it is clear that the metallic cation is important too. For example, sodium and lithium give quite different results in the condensation of acetophenone and tert-butyl acetate.422 The various rate and equilibrium constants depend on the nature of the associated metal. Lithium, zinc, and magnesium, which give the aldol condens-... [Pg.225]

Acetic anhydride, with 2-hep-tanone to give 3-n-butyl-2, 4-pentanedione, 51, 90 ACETIC FORMIC ANHYDRIDE, 50, 1 Acetone azine, 50, 2 ACETONE HYDRAZONE, 50, 2, 28 Acetophenone, 54, 93 as sensitizer for irradiation of bicyclo[2.2.1]hepta-2,5-diene to give quadricyclane,... [Pg.124]

A good correlation was obtained in 20-80% acetonitrile-water mixtures. The standard non-ionic compounds used to evaluate the columns were 2-hydroxy-acetophenone, coumarin, acetophenone, indole, propiophenone, butyro-phenone, isopropyl benzoate, butyl benzoate, and isopentyl benzoate. The plotted lines for the linear relationship measured in five different proportions... [Pg.111]

A number of reports on the thermal decomposition of peroxides have been published. The thermal decompositions of f-butyl peroxyacetate and f-butyl peroxypivalate, of HCOH and a kinetic study of the acid-induced decomposition of di-f-butyl peroxide in n-heptane at high temperatures and pressures have been reported. Thermolysis of substituted f-butyl (2-phenylprop-2-yl) peroxides gave acetophenone as the major product, formed via fragmentation of intermediate alkoxy radicals RCH2C(Ph)(Me)0. A study of the thermolysis mechanism of di-f-butyl and di-f-amyl peroxide by ESR and spin-trapping techniques has been reported. The di-f-amyloxy radical has been trapped for the first time. jS-Scission reaction is much faster in di-f-amyloxyl radicals than in r-butoxyl radicals. The radicals derived from di-f-butyl peroxide are more reactive towards hydrogen abstraction from toluene than those derived from di-f-amyl peroxide. [Pg.192]

Sugamoto and colleagnes have attempted the rednction-nitrosation of the conjn-gated olefins 33 by the nse of f-bntyl nitrite instead of oxygen (Scheme 24). Various olefins such as styrenes, a,-unsaturated carbonyl compounds and a, S,y,5-unsaturated carbonyl compounds were directly converted to the corresponding acetophenone oximes, a-hydroxyimino carbonyl compounds and y-hydroxyimino-a,/S-unsaturated carbonyl compounds in good or moderate yields by rednction-nitrosation with f-butyl nitrite and triethylsilane in the presence of cobalt(II) porphyrin as a catalyst (Scheme 24). [Pg.176]

Acetic acid has been found to react with toluene to form p-methylace-tophenone (Simons et al., 49), to react with benzene to form acetophenone, and to react with phenol to form p-hydroxy acetophenone. Acetyl chloride also formed acetophenone with benzene and acetic anhydride reacted with toluene to form both p-methylacetophenone and 2,4-diace-tyltoluene. Valeric acid reacted with toluene to form p-tolyl-n-butyl ketone. Both benzoic acid and benzoyl chloride reacted with toluene to form p-tolylphenyl ketone. Acenaphthene with either benzoic acid or benzoyl chloride gave 3-benzoylacenaphthene (Fieser and Hershberg,... [Pg.216]

After characterization of the systems, biotra ns formations were performed to produce chiral alcohols using 10 mM acetophenone, 15 mM 2,5-hexanedione, and 25 mM t-butyl 6-chloro-3,5-dioxohexanoate as substrates (Scheme 2.2.4.5). [Pg.347]

The specific cell activities for the reduction of 10 mM acetophenone, 15 mM 2,5-hexanedione, and 25 mM t-butyl 6-chloro-3,5-dioxohexanoate by E. coli BL21(DE3)/ pAW-3 and E. coli BL21(DE3)/pAW-4 are listed in Table 2.2.4.3, which shows that the reduction of acetophenone is the most efficient one, and that excellent specific cell activities were reached particularly with E. coli BL21(DE3)/pAW-3 cells. [Pg.348]

Under comparable conditions the submitters found that the corresponding dihydropyran derivatives were similarly obtained by the condensation of acrolein with methyl vinyl ether in 80-81% yield, with ethyl vinyl ether (77-85% yield), with w-butyl vinyl ether (82% yield), with ethyl isopropenyl ether (50% yield), and with w-butyl cyclohexenyl ether (40% yield). Other <, /3-un-saturated carbonyl compounds that have thus been condensed with ethyl vinyl ether are crotonaldehyde (87% yield), meth-acrolein (40% yield), a-ethyh/3-n-propylacrolein (54% yield), cinnamaldehyde (60% yield), /3-furylacrolein (85% yield), methyl vinyl ketone (50% yield), benzalacetone (75% yield), and benzal-acetophenone (74% yield). [Pg.30]


See other pages where Acetophenone butylation is mentioned: [Pg.820]    [Pg.9]    [Pg.87]    [Pg.196]    [Pg.137]    [Pg.510]    [Pg.610]    [Pg.125]    [Pg.466]    [Pg.283]    [Pg.2280]    [Pg.547]    [Pg.60]    [Pg.99]    [Pg.113]    [Pg.256]    [Pg.115]    [Pg.384]    [Pg.112]    [Pg.518]    [Pg.228]    [Pg.66]    [Pg.281]    [Pg.223]    [Pg.89]    [Pg.350]    [Pg.684]    [Pg.685]   
See also in sourсe #XX -- [ Pg.684 ]




SEARCH



© 2024 chempedia.info