Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylide anions

The proton of terminal acetylenes is acidic (pKa= 25), thus they can be deprotonated to give acetylide anions which can undergo substitution reactions with alkyl halides, carbonyls, epoxides, etc. to give other acetylenes. [Pg.115]

Addition ofGrignard reagents to 1,1-difluoroethylene yields an acetylide anion which can be subsequently trapped with electrophiles. [Pg.117]

The only common synthons for alkynes are acetylide anions, which react as good nucleophiles with alkyl bromides (D.E. Ames, 1968) or carbonyl compounds (p. 52, 62f.). [Pg.36]

Terminal alkynes are only reduced in the presence of proton donors, e.g. ammonium sulfate, because the acetylide anion does not take up further electrons. If, however, an internal C—C triple bond is to be hydrogenated without any reduction of terminal, it is advisable to add sodium amide to the alkyne solution Hrst. On catalytic hydrogenation the less hindered triple bonds are reduced first (N.A. Dobson, 1955, 1961). [Pg.100]

The major limitation to this reaction is that synthetically acceptable yields are obtained only with methyl halides and primary alkyl halides Acetylide anions are very basic much more basic than hydroxide for example and react with secondary and ter tiary alkyl halides by elimination... [Pg.372]

These compounds are sources of the nucleophilic anion RC=C and their reaction with primary alkyl halides provides an effective synthesis of alkynes (Section 9 6) The nucleophilicity of acetylide anions is also evident m their reactions with aldehydes and ketones which are entirely analogous to those of Grignard and organolithium reagents... [Pg.597]

The acetylide anion 3 is likely to form an alkynyl-copper complex by reaction with the cupric salt. By electron transfer the copper-II ion is reduced, while the acetylenic ligands dimerize to yield the -acetylene 2 ... [Pg.136]

The Glaser coupling reaction is carried out in aqueous ammonia or an alcohol/ammonia solution in the presence of catalytic amounts of a copper-I salt. The required copper-II species for reaction with the acetylide anion R-C=C are generated by reaction with an oxidant—usually molecular oxygen. For the Eglinton procedure, equimolar amounts of a copper-II salt are used in the presence of pyridine as base. [Pg.136]

The most striking difference between alkenes and alkynes is that terminal alkynes are weakly acidic. When a terminal alkyne is treated with a strong base, such as sodium amide, Na+ -NH2, the terminal hydrogen is removed and an acetylide anion is formed. [Pg.270]

Figure 8.5 A comparison of alkyl, vinylic, and acetylide anions. The acetylide anion, with sp hybridization, has more s character and is more stable. Electrostatic potential maps show that placing the negative charge closer to the carbon nucleus makes carbon appear less negative (red). Figure 8.5 A comparison of alkyl, vinylic, and acetylide anions. The acetylide anion, with sp hybridization, has more s character and is more stable. Electrostatic potential maps show that placing the negative charge closer to the carbon nucleus makes carbon appear less negative (red).
The presence of a negative charge and an unshared electron pair on carbon makes acetylide anions strongly nucleophilic. As a result, they react with many different kinds of electrophiles. [Pg.272]

Active Figure 8.6 MECHANISM A mechanism for the alkylation reaction of acetylide anion with bromomethane to give propyne. Sign in afwww.thomsonedu.com to see a simulation based on this figure and to take a short quiz. [Pg.272]

The nucleophilic acetylide anion uses its electron lone pair to form a bond to the positively polarized, electrophilic carbon atom of bromomethane. As the new C-C bond begins to form, the C-Br bond begins to break in the transition state. [Pg.272]

Strategy Compare the product with the starting material, and catalog the differences. In this case, we need to add three carbons to the chain and reduce the triple bond. Since the starling material is a terminal alkyne that can be alkylated, we might first prepare the acetylide anion ol 1-pentyne, let it react with 1-bromopropane, and then reduce the product using catalytic hydrogenation. [Pg.274]

An alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Alkyne carbon atoms are sp-hybridized, and the triple bond consists of one sp-sp a bond and two p-p tt bonds. There are relatively few general methods of alkyne synthesis. Two good ones are the alkylation of an acetylide anion with a primary-alkyl halide and the twofold elimination of HX from a vicinal dihalide. [Pg.279]

Terminal alkynes are weakly acidic. The alkyne hydrogen can be removed by a strong base such as Na+ NH2 to yield an acetylide anion. An acetylide... [Pg.279]

A wide array of substances can be prepared using nucleophilic substitution reactions. In fact, we ve already seen examples in previous chapters. The reaction of an acetylide anion with an alkyl halide (Section 8.8), for instance, is an Sn2 reaction in which the acetylide nucleophile replaces halide. [Pg.367]

Acetylide anion (Section 8.7) The anion formed by removal of a proton from a terminal alkyne. [Pg.1234]

DNA sequencing and. 1113 Electrospray ionization (ESI) mass spectrometry, 417-418 Electrostatic potential map, 37 acetaldehyde, 688 acetamide, 791,922 acetate ion. 43. 53, 56, 757 acetic acid. 53. 55 acetic acid dimer, 755 acetic anhydride, 791 acetone, 55, 56. 78 acetone anion, 56 acetyl azide, 830 acetyl chloride, 791 acetylene. 262 acetylide anion, 271 acid anhydride, 791 acid chloride, 791 acyl cation, 558 adenine, 1104 alanine, 1017 alanine zwitterion, 1017 alcohol. 75 alkene, 74, 147 alkyl halide, 75 alkyne. 74... [Pg.1295]

Retrosynthetic cleavage of the indicated bond in 9 provides acetylenic aldehyde 23 as a potential precursor. It was anticipated that the action of a suitable base on 23 would result in the formation of an acetylide anion, a competent carbon nucleophile that could... [Pg.531]

Potassium or lithium derivatives of ethyl acetate, dimethyl acetamide, acetonitrile, acetophenone, pinacolone and (trimethylsilyl)acetylene are known to undergo conjugate addition to 3-(t-butyldimethylsiloxy)-1 -cyclohexenyl t-butyl sulfone 328. The resulting a-sulfonyl carbanions 329 can be trapped stereospecifically by electrophiles such as water and methyl iodide417. When the nucleophile was an sp3-hybridized primary anion (Nu = CH2Y), the resulting product was mainly 330, while in the reaction with (trimethylsilyl)acetylide anion the main product was 331. [Pg.646]

On the other hand, following the same sequences from the differently protected serine-derived nitrone 168, through the formation of hydroxylamines 169, C2 epimers of carboxylic acid and aldehydes are obtained, i.e., (2S,3R)-170 and (2S,3R)-171. Moreover, the syn adducts 164 were exclusively obtained in the addition of Grignard reagents to the nitrone 163, whereas the same reactions on nitrone 168 occurred with a partial loss of diastereoselectivity [80]. Q, j6-Diamino acids (2R,3S)- and (2R,3R)-167 can also be prepared from the a-amino hydroxylamines 164 and 169 by reduction, deprotection and oxidation steps. The diastereoselective addition of acetylide anion to N,N-dibenzyl L-serine phenyhmine has been also described [81]. [Pg.32]

Here too, a second alkylation can be made to take place yielding RC=CR or R C=CR. It should, however, be remembered that the above carbanions—particularly the acetylide anion (57)—are the anions of very weak acids, and are thus themselves strong bases, as well as powerful nucleophiles. They can thus induce elimination (p. 260) as well as displacement, and reaction with tertiary halides is often found to result in alkene formation to the exclusion of alkylation. [Pg.289]


See other pages where Acetylide anions is mentioned: [Pg.115]    [Pg.155]    [Pg.270]    [Pg.270]    [Pg.271]    [Pg.271]    [Pg.271]    [Pg.272]    [Pg.272]    [Pg.273]    [Pg.279]    [Pg.280]    [Pg.280]    [Pg.281]    [Pg.281]    [Pg.367]    [Pg.1284]    [Pg.1285]    [Pg.551]    [Pg.203]    [Pg.223]    [Pg.289]   
See also in sourсe #XX -- [ Pg.156 ]

See also in sourсe #XX -- [ Pg.270 ]

See also in sourсe #XX -- [ Pg.270 ]

See also in sourсe #XX -- [ Pg.243 ]

See also in sourсe #XX -- [ Pg.187 ]

See also in sourсe #XX -- [ Pg.155 , Pg.156 ]

See also in sourсe #XX -- [ Pg.291 , Pg.292 ]

See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Acetylide

Acetylides

© 2024 chempedia.info