Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetone thermal decomposition

Some unsaturated ketones derived from acetone can undergo base- or acid-catalyzed exothermic thermal decomposition at temperatures under 200°C. Experiments conducted under adiabatic conditions (2) indicate that mesityl oxide decomposes at 96°C in the presence of 5 wt % of aqueous sodium hydroxide (20%), and that phorone undergoes decomposition at 180°C in the presence of 1000 ppm iron. The decomposition products from these reactions are endothermic hydrolysis and cleavage back to acetone, and exothermic aldol reactions to heavy residues. [Pg.487]

Excitation appears to be general for this reaction but yields of excited products vary substantially with the substituent R. The highest yield reported is from tetramethyl-l,2-dioxetane [35856-82-7] (TMD) where the yield of triplet acetone is 50% of total acetone formed (18,19). Probably only one carbonyl of the two produced can be excited by the thermal decomposition, and TMD provides 100% of the possible yield of triplet acetone. Singlet excited acetone is also formed, but at the low yield of 0.1—0.3% (17—21). Other tetraaLkyldioxetanes behave similarly to TMD (22). [Pg.263]

Other by-products include acetone, carbonaceous material, and polymers of propylene. Minor contaminants arise from impurities in the feed. Ethylene and butylenes can form traces of ethyl alcohol and 2-butanol. Small amounts of / -propyl alcohol carried through into the refined isopropyl alcohol can originate from cyclopropane [75-19-4] in the propylene feed. Acetone, an oxidation product, also forms from thermal decomposition of the intermediate sulfate esters, eg. [Pg.107]

Since the benzene emission in the thermal decomposition of benzoyl peroxide results from radical transfer by the phenyl component of a benzoyloxy-phenyl radical pair, phenyl benzoate produced by radical combination within the same pair should appear in absorption. A weak transient absorption has been tentatively ascribed to the ester (Lehnig and Fischer, 1970) but the complexity of the spectrum and short relaxation time (Fischer, personal communication) makes unambiguous assignment difficult. Using 4-chlorobenzoyl peroxide in hexachloro-acetone as solvent, however, the simpler spectrum of 4-chlorophenyl 4-chlorobenzoate is clearly seen as enhanced absorption, together with... [Pg.84]

Irradiation of 36a in 1,4-dichlorobenzone at 60 °C, a temperature at which thermal decomposition of the diazo compound is still negligible 24), in the presence of benzo-phenone, acetone, or cyclohexanone leads to l,3,4X5-dioxaphosphorins 56a-c (= 57a-c)33 ... [Pg.86]

Ferrous chloride-hydrochloric acid mixtures catalyzed the thermal decomposition of sulphonyl azides in isopropyl alcohol to give occasionally almost quantitative yields of sulphonamide and acetone, and the molar ratio of azide consumed to ferric chloride formed was typically of the order of 20 to 1 21>. [Pg.12]

The following mechanism has been proposed for the thermal decomposition of acetone. [Pg.123]

During water-gas shift in pyridine solution, they isolated [PtH(py)L2]BF4, while from water-gas shift run in acetone solution, they isolated raft -[PtF[(CO)L2]BF4. The results indicated a solvent effect. That is, it was difficult to substitute coordinated pyridine with CO, but it was easier to substitute acetone with CO, via [PtH(Solvent)L2]OH + CO <-> [PtH(CO)L2]OH + Solvent. Following this important solvent-facilitated CO addition, they proposed a nucleophilic attack of OH-on the coordinated CO, via [PtH(CO)L2]OH <-> [PtH(COOH)L2]. The next step is thermal decomposition of the species, liberating C02, via the decomposition [PtH(COOH)L2] <-> [PtH2L2] + C02. CO addition was proposed to assist in decomposing the hydride to liberate H2. A more detailed description of the catalytic cycle is provided in Scheme 19. [Pg.139]

Problem 3.7 (Chain Reaction) The thermal decomposition of acetone is found to follow the rate law as... [Pg.76]

S- and Se-donor ligands. The e.s.r. and electronic spectra of [Co(sacsac)2] and [Co(sacsac)2L] (sacsac = dithioacetylacetonate, L = py or piperidine) have been studied, and a polarographic study of [Co(sacsac)J (n = 2 or 3) in acetone has shown the complexes to have a well-defined capacity to accept one or two electrons in a reversible stepwise manner. The magnitude of the potentials and their reversible nature suggest that isolation of cobalt-sacsac complexes of low formal oxidation states should be possible." Co complexes of l,5-bis-(2-methylmercaptoethylthio)pentane are both hydrated and polymeric, and thermal decomposition in air or nitrogen leads to oxida tion to Co . Ethylenethiourea (etu) and tetramethylthiourea (tmtu) form the complexes [Co(etu) ](N03)2 and [Co(tmtu) ](C10 )2, which are tetrahedral, and [Co(etu)2(N03)2] and [Co(tmtu)2(N03)2] which have distorted octahedral co-ordination. 3-Diphenylphosphinothioyl-l-phenylthiourea, -1,1-diethyl-thiourea, and -1,1-dimethylthiourea form complexes with Co in which the ligands are bidentate. ... [Pg.245]

There is no published example of a cyclopropanation of the double bond in chlorocyclopropylideneacetate 1-Me with retention of the chlorine atom. Thus, attempted cyclopropanations under Simmons-Smith [37] or Corey [38] conditions failed [25]. The treatment of the highly reactive methylenecyclopropane derivative 1-Me with dimethoxycarbene generated by thermal decomposition of 2,2-dimethoxy-A -l,3,4-oxadiazoline 26 (1.5 equiv. of 26,PhH, 100 °C,24 h),gave a complex mixture of products (Scheme 7) [39], yet the normal cycloadduct 28 was not detected. The formation of compounds 29 - 33 was rationalized via the initially formed zwitterion 27, resulting from the Michael addition of the highly nucleophilic dimethoxycarbene to the C,C-double bond of 1-Me. The ring closure of 27 to the normal product 28 is probably reversible, and 27 can rearrange or add a second dimethoxycarbene moiety and a molecule of acetone to form 33. [Pg.158]

The thermal decomposition of diazotized anthranilic acid in acetone led to carbazole 328 as well as to 329, benzoic acid, and o-biphenylene. The 329... [Pg.186]

When the more reactive sulfonyl isothiocyanates are used as 1,3-dipolarophiles 4-alkyl-5-sulfonylimino-A2-l,2,3,4-thiatriazolines are readily prepared at room temperature by reaction with alkyl azides.64,65 The thiatriazolines are obtained in 50-75% yield. Their structures are deduced from NMR, IR, and mass spectral data and degradation experiments. Thus thermal decomposition at moderate temperature (45°-80°) in inert solvents (dry toluene, CC14, acetone) furnished the corresponding carbodiimides [Eq. (22)]. These were identified by their... [Pg.170]

SCHMIDLIN KETENE SYNTHESIS. Formation of kelene by thermal decomposition of acetone over electrically heated wire at 500-750 degrees by a reaction involving radical formation with generation of methane and carbon monoxide. [Pg.1461]

The thermal decomposition of ketene into carbon monoxide and ethylene is prevented, as far as possible, by the rapid removal of ketene from the hot tube, which is accomplished by the undccomposed acetone vapor. About half the acetone originally used should be collected unchanged as distillate by the vertical condenser. The yield of ketene will fall considerably if less distillate is formed. [Pg.42]

Both X-ray crystallography and electronic structure calculations using the cc-pVDZ basis set at the DFT B3LYP level have been employed to study the explosive properties of triacetone triperoxide (TATP) and diacetone diperoxide (DADP).32 The thermal decomposition pathway of TATP has been investigated by a series of calculations that identified transition states, intermediates, and the final products. Calculations predict that the explosion of TATP is not a thermochemically highly favoured event. It rather involves entropy burst, which is the result of formation of one ozone and three acetone molecules from every molecule of TATP in the solid state. [Pg.283]

Calcium acetate was formerly used to manufacture acetone by thermal decomposition ... [Pg.121]

In addition to the thermal decomposition the photochemical reaction of geminal diazide 62 was also studied. Irradiation of an acetone solution of 62 under an inert gas atmosphere afforded a complex mixture of products which could not be separated or identified. However, if the reaction was carried out in the presence of oxygen the uracil derivative 66 was obtained in 48 % yield. Surprisingly, in addition to the oxidation of the CH2 group, the 6-diazidomethyl function was completely lost during the reation [91JCS(P1)1342]. At the present time no mechanistic explanation for this unusual behavior can be presented. On the other hand, photooxidation of compound 63 leads straightforward to compound 67 [91 JCS(P1)1342],... [Pg.12]

R CHORj. Such radicals have been formed by hydrogen atom abstraction from the ether by radicals produced from thermal decomposition of peroxides (67, 75, 76). Similar radicals may be produced in photochemical processes, either by direct irradiation (29, 54), or by the use of a photosensitizer or a photoinitiator, such as acetone or benzophenone (21, 64, 66). The ether radicals once produced, participate in a variety of chemical reactions. It might be noted that resonance forms as illustrated... [Pg.101]

The possible extent to which free radical chains may account for the thermal decomposition of organic molecules in the gas phase was first emphasized by Rice and Herzfeld.26 They gave three examples showing how all the known facts in the decomposition of acetone, acetaldehyde and ethane could be explained by chain reactions involving free radicals. Their calculations showed that the first order character of the reaction could be maintained under proper conditions and they estimated reaction rates and temperature coefficients in agreement with the facts. [Pg.52]


See other pages where Acetone thermal decomposition is mentioned: [Pg.475]    [Pg.505]    [Pg.402]    [Pg.373]    [Pg.298]    [Pg.158]    [Pg.137]    [Pg.92]    [Pg.270]    [Pg.4]    [Pg.236]    [Pg.237]    [Pg.244]    [Pg.73]    [Pg.257]    [Pg.97]    [Pg.392]    [Pg.181]    [Pg.100]    [Pg.41]    [Pg.2278]    [Pg.653]    [Pg.494]    [Pg.497]    [Pg.359]    [Pg.155]   
See also in sourсe #XX -- [ Pg.191 , Pg.226 ]




SEARCH



Acetone, decomposition

Thermal decomposition

© 2024 chempedia.info