Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetoacetic ester enolate, alkylation

Section 21 7 The malonic ester synthesis is related to the acetoacetic ester synthesis Alkyl halides (RX) are converted to carboxylic acids of the type RCH2COOH by reaction with the enolate ion derived from diethyl mal onate followed by saponification and decarboxylation... [Pg.907]

Ester-substituted ketone enolates are stabilized, and these enolates can be alkylated (acetoacetic ester synthesis). Alkylation is, however, also possible for enolates that are not stabilized. In the case of the stabilized enolates, the alkylated ketones are formed in two or three steps, while the nonstabilized enolates afford the alkylated ketones in one step. However, the preparation of nonstabilized ketone enolates requires more aggressive reagents than the ones employed in the acetoacetic ester synthesis. [Pg.394]

Acetoacetic ester synthesis (Section 21 6) A synthetic method for the preparation of ketones in which alkylation of the enolate of ethyl acetoacetate... [Pg.1274]

Ethyl 3-oxobutanoate, commonly called ethyl acetoacetate or ace tome tic ester, is much like malonic ester in that its ct hydrogens are flanked by two carbonyl groups. It is therefore readily converted into its enolate ion, which can be alkylated by reaction with an alkyl halide. A second alkylation can also be carried out if desired, since acetoacetic ester has two acidic a hydrogens. [Pg.859]

The three-step sequence of 0) enolate ion formation, (2) alkylation, and (3) hydrolvsis/decarboxylation is applicable to all /Tketo esters with acidic a hydrogens, not just to acetoacetic ester itself. For example, cyclic /3-keto esters such as ethyl 2-oxocycIohexanecarboxylate can be alkylated and decarboxy-lated to give 2-substituted cyclohexanones. [Pg.860]

Both the malonic ester synthesis and the acetoacetic ester synthesis are easy to cany out because they involve unusually acidic dicarbonyi compounds. As a result, relatively mild bases such as sodium ethoxide in ethanol as solvent can be used to prepare the necessary enolate ions. Alternatively, however, it s also possible in many cases to directly alkylate the a position of monocarbonyl compounds. A strong, stericaliy hindered base such as LDA is needed so that complete conversion to the enolate ion takes place rather than a nucleophilic addition, and a nonprotic solvent must be used. [Pg.861]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

Still another possibility in the base-catalyzed reactions of carbonyl compounds is alkylation or similar reaction at the oxygen atom. This is the predominant reaction of phenoxide ion, of course, but for enolates with less resonance stabilization it is exceptional and requires special conditions. Even phenolates react at carbon when the reagent is carbon dioxide, but this may be due merely to the instability of the alternative carbonic half ester. The association of enolate ions with a proton is evidently not very different from the association with metallic cations. Although the equilibrium mixture is about 92 % ketone, the sodium derivative of acetoacetic ester reacts with acetic acid in cold petroleum ether to give the enol. The Perkin ring closure reaction, which depends on C-alkylation, gives the alternative O-alkylation only when it is applied to the synthesis of a four membered ring ... [Pg.226]

The enolate ions of acetoacetic ester and other active methylene compounds react with 0-propiolactone to give the ethoxycarbonyl derivative, but the yields are generally not high. Application of this reaction to 2-ethoxycarbonyldodecanone (equation 53) has been recently patented, with the product reported to be a useful perfume intermediate (77JAP(K)77133952). The reaction is used quite widely with diketene, which gives C-acylation rather than alkylation of the enolate ion, followed by cyclization (72CPB1574). [Pg.386]

It is this equilibrium which renders difficult the explanation of the course of the reactions which take place when metallic sodium or sodium ethoxide and then alkyl or acyl halide are added to these compounds. At first it was thought that the sodio compound formed with acetoacetic ester was CH3.CO.CHNa.COOC2H5, because the reaction with alkyl and acyl halides always yielded a C-derivative, CH3.CO.CHR.COOC2H5. The first example of a different course of reaction was found in the formation of an O-derivative—/3-carhethoxyhydroxycrotonic ester from sodio-acetoacetic ester and chloroformic ester (J. pr., [2], 37, 473 B., 25,1760 A., 277, 64). This could only be explained by assigning an enol formula to the sodium salt—... [Pg.138]

Fig. 13.29. Synthesis of complicated ketones in analogy to the acetoacetic ester synthesis II generation of a cyclic ketone. In the first step, the /3-ketoester is alkylated at its activated position. In the second step, the /3-ketoester is treated with Li I . SN2 reaction of the iodide at the methyl group generates the /3-ketocar-boxylate ion as the leaving group. The /3-ketocarboxylate decarboxylates immediately under the reaction conditions (temperature above 100 °C) and yields the enolate of a ketone. Fig. 13.29. Synthesis of complicated ketones in analogy to the acetoacetic ester synthesis II generation of a cyclic ketone. In the first step, the /3-ketoester is alkylated at its activated position. In the second step, the /3-ketoester is treated with Li I . SN2 reaction of the iodide at the methyl group generates the /3-ketocar-boxylate ion as the leaving group. The /3-ketocarboxylate decarboxylates immediately under the reaction conditions (temperature above 100 °C) and yields the enolate of a ketone.
Bisenolates such as compound A derived from the acetoacetic ester in Figure 13.32 react with one equivalent of alkylating reagent in a regioselective fashion to give the enolate C. This could be the result of product development control, since the isomeric alkylation product... [Pg.546]

Alkylation of the enolate anion derived from ethyl acetoacetate followed by removal of the ester group is known as the acetoacetic ester synthesis and is an excellent method for the preparation of methyl ketones. The product of an acetoacetic ester synthesis is the same as the product that would be produced by the addition of the same... [Pg.867]

In the malonic ester synthesis this enolate ion is alkylated in the same manner as in the acetoacetic ester synthesis. Saponification of the alkylated diester produces a diacid. The carbonyl group of either of the acid groups is at the /3-position relative to the other acid group. Therefore, when the diacid is heated, carbon dioxide is lost in the same manner as in the acetoacetic ester synthesis. The difference is that the product is a carboxylic acid in the malonic ester synthesis rather than the methyl ketone that is produced in the acetoacetic ester synthesis. The loss of carbon dioxide from a substituted malonic acid to produce a monoacid is illustrated in the following equation ... [Pg.869]

In both the acetoacetic ester synthesis and the malonic ester synthesis, it is possible to add two different alkyl groups to the a-carbon in sequential steps. First the enolate ion is generated by reaction with sodium ethoxide and alkylated. Then the enolate ion of the alkylated product is generated by reaction with a second equivalent of sodium ethoxide, and that anion is alkylated with another alkyl halide. An example is provided by the following equation ... [Pg.870]

The butylated /3-ketoester C of Figure 10.23 is not the final synthetic target of the acetoacetic ester synthesis of methyl ketones. In that context the /3-ketoester C is converted into the corresponding /3-ketocarboxylic add via add-catalyzed hydrolysis (Figure 10.24 for the mechanism, see Figure 6.19). This /3-ketocarboxylic acid is then heated either in the same pot or after isolation to effect decarboxylation. The /3-ketocarboxylic add de-carboxylates via a cyclic six-membered transition state in which three valence electron pairs are shifted at the same time. The reaction product is an enol, which isomerizes immediately to a ketone in general and to phenyl methyl ketone in the specific example shown. In general, alkyl methyl ketones are obtained by such acetoacetic ester syntheses. [Pg.392]

Many alkylation and acylation reactions are most effective using anions of /3-dicarbonyl compounds that can be completely deprotonated and converted to their enolate ions by common bases such as alkoxide ions. The malonic ester synthesis and the acetoacetic ester synthesis use the enhanced acidity of the a protons in malonic ester and acetoacetic ester to accomplish alkylations and acylations that are difficult or impossible with simple esters. [Pg.1077]

In contrast, /3-dicarbonyl compounds such as malonic ester and acetoacetic ester are more acidic than alcohols. They are completely deprotonated by alkoxides, and the resulting enolates are easily alkylated and acylated. At the end of the synthesis, one of the carbonyl groups can be removed by decarboxylation, leaving a compound that is difficult or impossible to make by direct alkylation or acylation of a simple ester. [Pg.1078]

The acetoacetic ester synthesis is similar to the malonic ester synthesis, but the final products are ketones specifically, substituted derivatives of acetone. In the acetoacetic ester synthesis, substituents are added to the enolate ion of ethyl acetoacetate (acetoacetic ester), followed by hydrolysis and decarboxylation to produce an alkylated derivative of acetone. [Pg.1082]

Acetoacetic ester is like a molecule of acetone with a temporary ester group attached to enhance its acidity. Ethoxide ion completely deprotonates acetoacetic ester. The resulting enolate is alkylated by an unhindered alkyl halide or tosylate to give an alkylacetoacetic ester. Once again, the alkylating agent must be a good SN2 substrate. [Pg.1082]

An acetoacetic ester synthesis goes through alkylation of the enolate, hydrolysis, and decarboxylation.To design a synthesis, look at the product and see what groups are added to acetone. Use those groups to alkylate acetoacetic ester, then hydrolyze and decarboxylate. [Pg.1084]

Among common carbon-carbon bond formation reactions involving carbanionic species, the nucleophilic substitution of alkyl halides with active methylene compounds in the presence of a base, e. g., malonic and acetoacetic ester syntheses, is one of the most well documented important methods in organic synthesis. Ketone enolates and protected ones such as vinyl silyl ethers are also versatile nucleophiles for the reaction with various electrophiles including alkyl halides. On the other hand, for the reaction of aryl halides with such nucleophiles to proceed, photostimulation or addition of transition metal catalysts or promoters is usually required, unless the halides are activated by strong electron-withdrawing substituents [7]. Of the metal species, palladium has proved to be especially useful, while copper may also be used in some reactions [81. Thus, aryl halides can react with a variety of substrates having acidic C-H bonds under palladium catalysis. [Pg.213]

The synthetic utility of alkylation of enolates is utilized in the syntheses of malonic ester (3.3) and acetoacetic ester (3.2). For example, carbanion generated from malonic ester undergoes an Sn2 reaction with alkyl halide to yield alkyl-substituted malonic ester. The monosubstituted malonic ester still has an active hydrogen atom. The second alkyl group (same or different) can be introduced in a similar manner. Acid-catalyzed hydrolysis or base-catalyzed hydrolysis of mono- or disubstituted derivative of malonic ester followed by acidification gives the corresponding mono- or disubstituted malonic acid, which on decarboxylation yields the corresponding monocarboxylic acid (Scheme 3.3). [Pg.116]

The over-all yields (R equals w-C,-Q, -C , and -C ) from the esters vary from 55% to 78%. Certain heterocyclic ketones, namely, 8-acetyl-quinoline and /3-acetylpyridine, have been prepared through a mixed ester condensation. (3) If acetoacetic ester is acylated in the form of its sodium enolate and carefully hydrolyzed, a new /3-keto ester is formed. Alkylation of this keto ester followed by hydrolysis gives ketones of the type RCOCH,R. ... [Pg.616]

Classic synthetic methods based upon the alkylation of enolates were therefore limited to cases where especially stable enolates could be generated. Usually )S-dicarbonyl compounds such as acetoacetic ester or malonic ester were used as precursors in these reactions. For example, alkylation of the stable enolate derived from malonic ester served as a routine and totally reliable method to achieve C2 chain elongation, as shown in the standard sequence below ... [Pg.77]

Besides the direct method of enolate alkylation discussed in Section 23.8, a new alkyl group can also be introduced on the a carbon using the malonic ester synthesis and the acetoacetic ester synthesis. [Pg.901]

The acetoacetic ester synthesis and direct enolate alkylation are two different methods that prepare similar ketones. 2-Butanone, for example, can be synthesized from acetone by direct enolate alkylation with CH3I (Method [1]), or by alkylation of ethyl acetoacetate followed by hydrolysis and decarboxylation (Method [2]). [Pg.907]

In the chemical industry, moreover, cost is an important issue. Any reaction needed to make a large quantity of a useful drug or other consumer product must use cheap starting materials. Direct enolate alkylation usually requires a very strong base like LDA to be successful, whereas the acetoacetic ester synthesis utilizes NaOEt. NaOEt can be prepared from cheaper starting materials, and this makes the acetoacetic ester synthesis an attractive method, even though it involves more steps. [Pg.908]

Among other methods for the preparation of alkylated ketones are (1) Alkylation of silyl enol ethers using various reagents as noted above, (2) the Stork enamine reaction (10-69), (3) the acetoacetic ester synthesis (10-67), (4) alkylation of p-keto sul-fones or sulfoxides (10-67), (5) acylation of CH3SOCH2 followed by reductive cleavage (16-86), (6) treatment of a-halo ketones with lithium dialkylcopper reagents (10-57), and (7) treatment of a-halo ketones with trialkylboranes (10-73). [Pg.632]

On heating with aqueous HCl, the alkylated (or dialkylated) acetoacetic ester is hydrolyzed to a jCJ-keto acid and then decarboxylated to yield the ketone product. The decarboxylation occurs in the same way as in the malonic ester synthesis and involves a ketone enol as initial product. [Pg.921]


See other pages where Acetoacetic ester enolate, alkylation is mentioned: [Pg.131]    [Pg.67]    [Pg.544]    [Pg.544]    [Pg.547]    [Pg.392]    [Pg.393]    [Pg.395]    [Pg.925]    [Pg.135]   
See also in sourсe #XX -- [ Pg.77 , Pg.134 ]




SEARCH



Acetoacetate ester

Acetoacetates esters

Acetoacetates, enolization

Acetoacetic ester acetoacetate

Acetoacetic ester, alkylation

Acetoacetic ester—

Alkyl 4 -acetoacetate

Alkyl esters

Alkylations ester enolates

Enol alkyl

Enol esters

Enolate alkylation

Enolates alkylation

Enolates enol esters

Enols alkylation

Ester enolate

Ester enolate alkylation

Esters acetoacetic ester

Esters alkylation

Esters enolates

Esters enolization

© 2024 chempedia.info