Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic anhydride synthesis

FIGURE 9.23 Reaction network for acetic anhydride synthesis. [Pg.458]

We will begin with the carbonylation of Mel which in situ is generated from MeOH for acetic acid production because of its industrial importance. Acetic acid is an important chemical commodity with a wide range of appUcations in organic chemistry. In organic synthesis, acetic acid is mainly used as a raw material for vinyl acetate monomers and acetic anhydride synthesis, as well as a solvent for producing terephthalic acid from xylene via the oxidation process. In 1998 the world s capacity of acetic acid production was approximately 7.8 milUon tons, of which more than 50 % were produced by BP-Amoco and Celanese. [Pg.13]

Acetic anhydride Synthesis of ethylene derivs. from azomethines... [Pg.497]

Coumarin is usually prepared by heating salicylaldehyde with acetic anhydride and sodium acetate (i.e., the Perkin cinnamic acid synthesis, p. 23 6), whereby the 0" hydroxy-cinnamic acid (I) undergoes cyclisation to coumarin. Coumarins having substituents in the benzene ring can often be similarly prepared. [Pg.307]

Because coupling is not always quantitative, the non-reacted terminal deoxynucteoside must be excluded from the following synthesis cycles. Otherwise deletion sequences will render the isolation of the pure final product difficult. Therefore a capping step (step 3) follows, e.g., acetylation with acetic anhydride and N,N-dimethyl-4-pyridinamine (DMAP) in dioxane. Capping times should be as short as possible, especially with 2-cyanoethyl phosphite triesters, which are sensitive to bases such as DMAP. [Pg.223]

In aprotic conditions acetic anhydride sodium acetate induces formation of a fused ring through an intra molecular condensation. It results in a pyrrolo[2,l-fc]thiazole (39), which constitutes an interesting intermediate for the synthesis of dyes (Scheme 18) (40). [Pg.36]

Using benzene acetic anhydride and 1 propanethiol as the source of all the carbon atoms along with any necessary inorganic reagents outline a synthesis of the compound shown... [Pg.786]

Therapeutics. Compounds containing the furan or tetrahydrofuran ring are biologically active and are present in a number of pharmaceutical products. Eurfurjdamine [617-89-0] is an intermediate in the diuretic, furosemide. Tetrahydrofurfurylamine [4795-29-3] may also have pharmaceutical applications. 5-(E)imethyiaininomethyi)furfuryi alcohol [15433-79-17 is an intermediate in the preparation of ranitidine, which is used for treating ulcers. 2-Acet5dfuran [1192-62-7] prepared from acetic anhydride and furan is an intermediate in the synthesis of cefuroxime, a penicillin derivative. 2-Euroic acid is prepared by the oxidation of furfural. Both furoic acid [88-14-2] and furoyl chloride [527-69-5] are used as pharmaceutical intermediates. [Pg.83]

Synthesis gas is obtained either from methane reforming or from coal gasification (see Coal conversion processes). Telescoping the methanol carbonylation into an esterification scheme furnishes methyl acetate directly. Thermal decomposition of methyl acetate yields carbon and acetic anhydride,... [Pg.68]

Acetic Acid and Anhydride. Synthesis of acetic acid by carbonylation of methanol is another important homogeneous catalytic reaction. The Monsanto acetic acid process developed in the late 1960s is the best known variant of the process. [Pg.166]

There are some chemicals that can be made economically from coal or coal-derived substances. Methanol and CO are used to make acetic anhydride and acetic acid. Methanol itself can be made from synthesis gas over a copper-2inc catalyst (see Feedstocks, coal chemicals). [Pg.366]

Synthesis Gas Chemicals. Hydrocarbons are used to generate synthesis gas, a mixture of carbon monoxide and hydrogen, for conversion to other chemicals. The primary chemical made from synthesis gas is methanol, though acetic acid and acetic anhydride are also made by this route. Carbon monoxide (qv) is produced by partial oxidation of hydrocarbons or by the catalytic steam reforming of natural gas. About 96% of synthesis gas is made by steam reforming, followed by the water gas shift reaction to give the desired H2 /CO ratio. [Pg.366]

The synthesis of 2,4-dihydroxyacetophenone [89-84-9] (21) by acylation reactions of resorcinol has been extensively studied. The reaction is performed using acetic anhydride (104), acetyl chloride (105), or acetic acid (106). The esterification of resorcinol by acetic anhydride followed by the isomerization of the diacetate intermediate has also been described in the presence of zinc chloride (107). Alkylation of resorcinol can be carried out using ethers (108), olefins (109), or alcohols (110). The catalysts which are generally used include sulfuric acid, phosphoric and polyphosphoric acids, acidic resins, or aluminum and iron derivatives. 2-Chlororesorcinol [6201-65-1] (22) is obtained by a sulfonation—chloration—desulfonation technique (111). 1,2,4-Trihydroxybenzene [533-73-3] (23) is obtained by hydroxylation of resorcinol using hydrogen peroxide (112) or peracids (113). [Pg.491]

Synthesis. Hydroxyhydroquiaone is not produced on a large scale, but many uses for it are being developed. The most convenient preparation of hydroxyhydroquiaone is the reaction of -benzoquiaone with acetic anhydride ia the preseace of sulfuric acid or phosphoric acid. The resultant triacetate (29) can be hydrolyzed to hydroxyhydroquiaone (86). [Pg.380]

An especially interesting case of oxygen addition to quinonoid systems involves acidic treatment with acetic anhydride, which produces both addition and esterification (eq. 3). This Thiele-Winter acetoxylation has been used extensively for synthesis, stmcture proof, isolation, and purification (54). The kinetics and mechanism of acetoxylation have been described (55). Although the acetyhum ion is an electrophile, extensive studies of electronic effects show a definite relationship to nucleophilic addition chemistry (56). [Pg.411]

The introduction of tritium into molecules is most commonly achieved by reductive methods, including catalytic reduction by tritium gas, PH2], of olefins, catalytic reductive replacement of halogen (Cl, Br, or I) by H2, and metal pH] hydride reduction of carbonyl compounds, eg, ketones (qv) and some esters, to tritium-labeled alcohols (5). The use of tritium-labeled building blocks, eg, pH] methyl iodide and pH]-acetic anhydride, is an alternative route to the preparation of high specific activity, tritium-labeled compounds. The use of these techniques for the synthesis of radiolabeled receptor ligands, ie, dmgs and dmg analogues, has been described ia detail ia the Hterature (6,7). [Pg.438]

Although all four tocopherols have been synthesized as their all-rac forms, the commercially significant form of tocopherol is i7//-n7i a-tocopheryl acetate. The commercial processes ia use are based on the work reported by several groups ia 1938 (15—17). These processes utilize a Friedel-Crafts-type condensation of 2,3,5-trimethylhydroquinone with either phytol (16), a phytyl haUde (7,16,17), or phytadiene (7). The principal synthesis (Fig. 3) ia current commercial use iavolves condensation of 2,3,5-trimethylhydroquiQone (13) with synthetic isophytol (14) ia an iaert solvent, such as benzene or hexane, with an acid catalyst, such as ziac chloride, boron trifluoride, or orthoboric acid/oxaUc acid (7,8,18) to give the all-rac-acetate ester (15b) by reaction with acetic anhydride. Purification of tocopheryl acetate is readily accompHshed by high vacuum molecular distillation and rectification (<1 mm Hg) to achieve the required USP standard. [Pg.146]

Manufacture. The most widely employed method for the commercial synthesis of (H)-cinnamic acid uti1i2es ben2aldehyde, acetic anhydride, and anhydrous sodium or potassium acetate in a condensation reaction commonly referred to as the Perkin reaction (11). [Pg.173]

Lipase-catalyzed enantioselective transesterification of 0-substituted-l,2-diols is another practical route for the synthesis of P-blockers. Lipase PS suspended in toluene catalyzes the transesterification of (63) with vinyl acetate to give the (5)-ester in 43% yield and >98% ee (78). The desired product, optically pure (R)-ttitylglycidol, is then easily obtained by treating the ester with alcohoHc alkaU. Moreover, Pseudomonas Hpase catalyzes the acylation of oxazohdinone (64) with acetic anhydride in very good yield and selectivity (74). PPL-catalyzed transesterification of a number of /n j -norbomene derivatives proceeds in about 30% yield and 92% ee (79,80). [Pg.340]

The creation of the N—N bond as the last step of the ring synthesis is common in indazoles and very rare in pyrazoles. In indazoles this method is well known (type B synthesis (67HC(22)l), for example, the dehydration of oximes (570) with acetic anhydride yields 1-acetylindazoles (571), and in basic medium the indazole 1-oxides (573) are formed from the nitro derivatives (572). [Pg.274]

Eastman Chemical Company has operated a coal-to-methanol plant in Kingsport, Tennessee, since 1983. Two Texaco gasifiers (one is a backup) process 34 Mg/h (37 US ton/h) of coal to synthesis gas. The synthesis gas is converted to methanol by use of ICl methanol technology. Methanol is an intermediate for producing methyl acetate and acetic acid. The plant produces about 225 Gg/a (250,000 US ton/a) of acetic anhydride. As part of the DOE Clean Coal Technology Program, Air Products and Cnemicals, Inc., and Eastman Chemic Company are constructing a 9.8-Mg/h (260-US ton/d) slurry-phase reactor for the conversion of synthesis gas to methanol and dimethyl... [Pg.2377]

A ( )-Enol-l 1-acetates are formed by distillation of acetic anhydride in the presence of / -toluenesulphonic acid. Another procedure employed for the synthesis of enol benzoates involves treatment with benzoic anhydride and triphenyl methyl sodium or ethynyl sodium. Suitable procedures utilizing a diluent have been developed for the enol esterification of a 20-ketone without affecting an 11-ketone. [Pg.401]

Acetoxy-21-nor-5a-cholestan-20-one (73a) as well as the free alcohol (73b) react with methylmagnesium iodide to give a mixture of epimeric diols (74). After treatment with acetic anhydride and subsequent hydrogenation over reduced platinum oxide this mixture alfords 3j5-acetoxy-5oc-cholestane (75) which is identical with the natural product. This synthesis has been used to prepare the 21- C compound (75) in a total yield of 18... [Pg.70]


See other pages where Acetic anhydride synthesis is mentioned: [Pg.331]    [Pg.749]    [Pg.331]    [Pg.749]    [Pg.133]    [Pg.285]    [Pg.296]    [Pg.425]    [Pg.285]    [Pg.427]    [Pg.434]    [Pg.438]    [Pg.29]    [Pg.169]    [Pg.23]    [Pg.336]    [Pg.80]    [Pg.108]    [Pg.113]    [Pg.125]    [Pg.318]    [Pg.234]    [Pg.256]    [Pg.680]    [Pg.768]    [Pg.808]    [Pg.831]    [Pg.354]   
See also in sourсe #XX -- [ Pg.11 , Pg.176 ]




SEARCH



2-Pyridones synthesis, acetic anhydride

Acetals, synthesis

Acetamide synthesis acetic anhydride

Acetic acid anhydride syntheses

Acetic anhydride aspirin synthesis

Acetic anhydride, trifluororeactions with boron-stabilized carbanions synthesis of alkenes

Acetic synthesis

Aldehydes heterocyclic, synthesis, acetic anhydride

Anhydride synthesis

Selective synthesis of acetophenones in batch reactors through acetylation with acetic anhydride

Selective synthesis of acetophenones in fixed bed reactors through acetylation with acetic anhydride

Synthesis acetate

© 2024 chempedia.info