Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basicity acetaldehyde

Acetaldehyde (and other aldehydes containing at least one hydrogen atom in the a position) when treated with a small quantity of dilute sodium hydr oxide solution or other basic catalyst gives a good yield of aldol (p hydroxy-n-but3Taldehyde) (I), which readily loses water, either by heating the isolated aldol alone or with a trace of mineral acid, to form crotonaldehyde (II) ... [Pg.351]

The selective intermolecular addition of two different ketones or aldehydes can sometimes be achieved without protection of the enol, because different carbonyl compounds behave differently. For example, attempts to condense acetaldehyde with benzophenone fail. Only self-condensation of acetaldehyde is observed, because the carbonyl group of benzophenone is not sufficiently electrophilic. With acetone instead of benzophenone only fi-hydroxyketones are formed in good yield, if the aldehyde is slowly added to the basic ketone solution. Aldols are not produced. This result can be generalized in the following way aldehydes have more reactive carbonyl groups than ketones, but enolates from ketones have a more nucleophilic carbon atom than enolates from aldehydes (G. Wittig, 1968). [Pg.56]

Pentaerythritol is produced by reaction of formaldehyde [50-00-0] and acetaldehyde [75-07-0] in the presence of a basic catalyst, generally an alkah or alkaline-earth hydroxide. Reaction proceeds by aldol addition to the carbon adjacent to the hydroxyl on the acetaldehyde. The pentaerythrose [3818-32-4] so produced is converted to pentaerythritol by a crossed Cannizzaro reaction using formaldehyde. All reaction steps are reversible except the last, which allows completion of the reaction and high yield industrial production. [Pg.465]

Hydrolysis of vinyl acetate is catalyzed by acidic and basic catalysts to form acetic acid and vinyl alcohol which rapidly tautomerizes to acetaldehyde. This rate of hydrolysis of vinyl acetate is 1000 times that of its saturated analogue, ethyl acetate, ia alkaline media (15). The rate of hydrolysis is minimal at pH 4.44 (16). Other chemical reactions which vinyl acetate may undergo are addition across the double bond, transesterification to other vinyl esters, and oxidation (15—21). [Pg.459]

The hydration reaction has been extensively studied because it is the mechanistic prototype for many reactions at carbonyl centers that involve more complex molecules. For acetaldehyde, the half-life of the exchange reaction is on the order of one minute under neutral conditions but is considerably faster in acidic or basic media. The second-order rate constant for acid-catalyzed hydration of acetaldehyde is on the order of 500 M s . Acid catalysis involves either protonation or hydrogen bonding at the carbonyl oxygen. [Pg.450]

Adolph Baeyer is credited with the first recognition of the general nature of the reaction between phenols and aldehydes in 1872 ([2,5-7] [18], Table 5.1). He reported formation of colorless resins when acidic solutions of pyrogallic acid or resorcinol were mixed with oil of bitter almonds, which consists primarily benzaldehyde. Baeyer also saw resin formation with acidic and basic solutions of phenol and acetaldehyde or chloral. Michael and Comey furthered Baeyer s work with additional studies on the behavior of benzaldehyde and phenols [2,19]. They studied a variety of acidic and basic catalysts and noted that reaction vigor followed the acid or base strength of the catalyst. Michael et al. also reported rapid oxidation and darkening of phenolic resins when catalyzed by alkaline materials. [Pg.870]

The applicability of the Cannizzaro reaction may be limited, if the substrate aldehyde can undergo other reactions in the strongly basic medium. For instance an a ,a ,a -trihalo acetaldehyde reacts according to the haloform reaction. [Pg.52]

To a solution of 5 g of sisomicin in 250 ml of water add 1 N sulfuric acid until the pH of the solution is adjusted to about 5. To the solution of sisomicin sulfuric acid addition salt thereby formed, add 2 ml of acetaldehyde, stir for 10 minutes, then add 0.B5 g of sodium cyanoborohydride. Continue stirring at room temperature for 15 minutes, then concentrate solution In vacuo to a volume of about 100 ml, treat the solution with a basic ion exchange resin [e.g., Amberlite IRA401S (OH )], then lyophilize to a residue comprising 1-N-ethyl-sisomicin. [Pg.1066]

PETN was first prepared in 1894 by the nitration of pentaerythritol, PE (Ref 1). This is still the basic method used today. Commercial production of PETN could not be realized until the formaldehyde and acetaldehyde required in the synthesis of PE became readily available about a decade before WWII... [Pg.571]

In the haloform reaction, methyl ketones (and the only methyl aldehyde, acetaldehyde) are cleaved with halogen and a base. The halogen can be bromine, chlorine, or iodine. What takes place is actually a combination of two reactions. The first is an example of 12-4, in which, under the basic conditions employed, the methyl group is trihalogenated. Then the resulting trihalo ketone is attacked by hydroxide ion ... [Pg.813]

These reducing agents are much more stable than sodium dithionite at lower temperatures hence they can be used to prepare stable pad liquors and print pastes. At higher temperatures, as in steam fixation treatments, they are capable of bringing about rapid reduction of vat dyes. Sodium formaldehyde-sulphoxylate was used first in conventional steam fixation of vat prints, although the acetaldehyde analogue was initially preferred for the flash-ageing process. As vat dyes are invariably fixed under alkaline conditions, the sodium salts of the sulphoxylates are preferred to the basic salts of zinc (12.55) or calcium (12.56), which are unstable under alkaline conditions. [Pg.436]

Reaction of guanine nucleosides and nucleotides with acetaldehyde yields the tricyclic pyrimidopurines (Equation 160), this reaction being accelerated by the addition of a basic amino acid such as arginine or lysine at pH 8 <2002TL6701>. [Pg.941]

The naming of this process has been confused because of various corporate relationships. The basic invention was created in 1957 at the Consortium fur Elektrochemische Industrie, Munich, a wholly owned subsidiary of Wacker-Chemie. It has therefore been called both the Wacker process and the Consortium process. But for many years, Wacker-Chemie has had a close relationship with Farbwerke Hoechst and the latter company has participated in some of the development and licensing activities, so two other names have come to be used Wacker-Hoechst and Hoechst-Wacker. The live inventors (J. Schmidt, W. Hafner, J. Sedlmeier, R. Jira, and R. Riittinger) received the Dechema prize in 1962 for this invention. The acetaldehyde process was first operated commercially in 1960. In 1997, this process was used in making 85 percent of the world s production of acetaldehyde. Although Wacker-Chemie still makes vinyl acetate, it no longer uses the Wacker process to do so. [Pg.286]

Double bonds characterize the basic building blocks of the petrochemical business. Ethylene, for example, is the chemical compound used to make vinyl chloride, ethylene oxide, acetaldehyde, ethyl alcohol, styrene, alpha olefins, and polyethylene, to name only a few. Propylene and benzene, the other big-volume building blocks, also have the characteristic double bonds. [Pg.5]

In 1969, 90% of vinyl acetate was manufactured by this process. By 1975 only 10% was made from acetylene, and in 1980 it was obsolete. Instead, a newer method based on ethylene replaced this old acetylene chemistry. A Wacker catalyst is used in this process similar to that for acetic acid. Since the acetic acid can also be made from ethylene, the basic raw material is solely ethylene, in recent years very economically advantageous as compared to acetylene chemistry. An older liquid-phase process has been replaced by a vapor-phase reaction run at 70-140 psi and 175-200°C. Catalysts may be (1) C—PdCb—CuCb, (2) PdClj—AI2O3, or (3) Pd—C, KOAc. The product is distilled water, acetaldehyde, and some polymer are... [Pg.153]

This ketal protective group is resistant to basic and nucleophilic reagents but is readily removed by aqueous acid. Formaldehyde, acetaldehyde, and benzaldehyde can also used as the carbonyl component in the formation of cyclic acetals. They function in the same manner as acetone. A disadvantage in the case of acetaldehyde and benzaldehyde is the possibility of forming a mixture of diastereomers, because of the new stereogenic center at the acetal carbon. [Pg.829]


See other pages where Basicity acetaldehyde is mentioned: [Pg.256]    [Pg.470]    [Pg.523]    [Pg.376]    [Pg.284]    [Pg.876]    [Pg.676]    [Pg.281]    [Pg.83]    [Pg.25]    [Pg.176]    [Pg.256]    [Pg.266]    [Pg.389]    [Pg.196]    [Pg.163]    [Pg.437]    [Pg.455]    [Pg.257]    [Pg.750]    [Pg.24]    [Pg.26]    [Pg.173]    [Pg.158]    [Pg.654]    [Pg.279]    [Pg.79]    [Pg.278]    [Pg.446]    [Pg.112]    [Pg.114]    [Pg.177]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



© 2024 chempedia.info