Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption vapor pressure

Bromine Trifluoride. Bromine trifluoride is a colorless Hquid. The commercial grade is usually amber to red because of slight bromine contamination. The molecule has a distorted T stmeture (26). Infrared spectral data (26—30), the uv-absorption spectmm (31), and vapor pressure data (32) may be found in the Hterature. [Pg.184]

Bromine Pentafluoride. Bromine pentafluoride is a colorless Hquid having the molecular stmeture of a tetragonal pyramid (5). The index of refraction is 1.3529 (33). Infrared spectra (13,34), the uv-absorption spectmm (35), and vapor pressure data (11) are all available. [Pg.184]

Chlorine Monofluoride. Chlorine monofluoride is a colorless gas that condenses to a Hquid with a slight yeUow cast and free2es to a white soHd. The infrared spectmm of gaseous chlorine monofluoride and the Raman spectmm of the Hquid have been studied (36). The uv-absorption spectmm (37) and vapor pressure data are also available (11). [Pg.184]

Chlorine Pentafluoride. Chlorine pentafluoride is a colorless gas at room temperature. The ir and Raman spectra of the Hquid and gas phase have been studied (34,39). The uv absorption spectmm (45) and vapor pressure data may be found in the Hterature (18). [Pg.185]

Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
The high solubility of the salt and resultant low water vapor pressure (58) of its aqueous solutions ate usehil ia absorption air conditioning (qv) systems. Lithium bromide absorption air conditioning technology efficiencies can surpass that of reciprocal technology usiag fluorochlorocarbon refrigerants. [Pg.226]

The Rectisol process is more readily appHcable for acid gas removal from synthesis gas made by partial oxidation of heavy feedstocks. The solvents used in Purisol, Fluor Solvent, and Selexol processes have low vapor pressures and hence solution losses are minimal. Absorption systems are generally corrosion-free. [Pg.349]

Humectants and low vapor pressure cosolvents are added to inhibit drying of ink in the no22les. Surfactants or cosolvents that lower surface tension are added to promote absorption of ink vehicle by the paper and to prevent bleed. For improvements in durabiUty, additional materials such as film-forming polymers have been added. Ink developments are providing ink-jet prints with improved lightfastness, waterfastness, and durabiUty. As a result, such prints are beginning to rival the quaUty of electrophotographic prints. [Pg.54]

Oleum Ma.nufa.cture, To produce fuming sulfuric acid (oleum), SO is absorbed in one or more special absorption towers irrigated by recirculated oleum. Because of oleum vapor pressure limitations the amount of SO absorbed from the process gas is typically limited to less than 70%. Because absorption of SO is incomplete, gas leaving the oleum tower must be processed in a nonfuming absorption tower. [Pg.187]

Because the solution is capable of absorbing one mole of carbon monoxide per mole of cuprous ion, it is desirable to maximize the copper content of the solution. The ammonia not only complexes with the cuprous ion to permit absorption but also increases the copper solubiUty and thereby permits an even greater carbon monoxide absorption capacity. The ammonia concentration is set by a balance between ammonia vapor pressure and solution acidity. Weak organic acids, eg, formic, acetic, and carbonic acid, are used because they are relatively noncorrosive and inexpensive. A typical formic acid... [Pg.54]

The drying mechanisms of desiccants may be classified as foUows Class 1 chemical reaction, which forms either a new compound or a hydrate Class 2 physical absorption with constant relative humidity or vapor pressure (solid + water + saturated solution) Class 3 physical absorption with variable relative humidity or vapor pressure (soHd or liquid + water + diluted solution) and Class 4 physical adsorption. [Pg.505]

Pure-component vapor pressures can be used for predicting solu-bihties for systems in which RaoiilFs law is valid. For such systems Pa = Pa a, where p° is the pure-component vapor pressure of the solute andp is its partial pressure. Extreme care should be exercised when attempting to use pure-component vapor pressures to predict gas-absorption behavior. Both liquid-phase and vapor-phase nonidealities can cause significant deviations from the behavior predicted from pure-component vapor pressures in combination with Raoult s law. Vapor-pressure data are available in Sec. 3 for a variety of materials. [Pg.1351]

The scrubbing liquid must be chosen with specific reference to the gas being removed. The gas solubility in the liquid solvent should be high so that reasonable quantities of solvent are required. The solvent should have a low vapor pressure to reduce losses, be noncorrosive, inexpensive, nontoxic, nonflammable, chemically stable, and have a low freezing point. It is no wonder that water is the most popular solvent used in absorption devices. The water may be treated with an acid or a base to enhance removal of a specific gas. If carbon dioxide is present in the gaseous effluent and water is used as the scrubbing liquid, a solution of carbonic acid will gradually replace the water in the system. [Pg.478]

Both factors depend on the respective partial vapor pressures of water and carbon dioxide and upon the distance to the radiation source. The partial vapor pressure of carbon dioxide in the atmosphere is fairly constant (30 Pa), but the partial vapor pressure of water varies with atmospheric relative humidity. Duiser (1989) published graphs plotting absorption factors (a) against the product of partial vapor pressure and distance to flame (Px) for flame temperatures ranging from 800 to 1800 K. [Pg.63]

Two sources of absorption oil are normally utilized in this tower. The first is the hydrocarbon liquid from the main fractionator overhead receiver. This stream, often called wild, or unstabilized, naphtha, enters the absorber a few trays below the top tray. The second absorbent is cooled debutanized gasoline, which generally enters on the top tray. It has a lower vapor pressure and can be considered a trim absorbent. The expression lean oil generally refers to the debutanized gasoline plus the unstabilized naphtha from the overhead receiver. [Pg.27]

Volkov and Sushko [335] described a technique that is based on the use of nets. This method provides direct absorption spectra, but is very complex to perform The net must be placed in a chamber that ensures a pure inert atmosphere so as to avoid hydrolysis of the melt, and the temperature and geometry of the net must be kept very stable. Other major limitations of the method are the requirements that the surface tension of the melt be such that its position on the net is ensured, and that the vapor pressure of the material in molten state be as low as possible... [Pg.169]

Raising the temperature of liquid water raises its vapor pressure. This is in accord with Le Chatelier s Principle since heat is absorbed as the liquid vaporizes. This absorption of heat, which accompanies the change to the new equilibrium conditions, partially counteracts the temperature rise which caused the change. [Pg.150]

The boiling of water results in the continuous absorption of heat energy until a point is reached, for any particular pressure, at which the liquid (water) changes into a gas (steam). This boiling point or (heat) saturation temperature occurs when the water vapor pressure is equal to the local pressure. [Pg.4]

Carbon was estimated by a variation of the Van Slyke method.(2) A 30-100 mg sample was heated for 30 minutes with 0.5 g K2Cr207, lg KIOj, 10 mL 20% fuming H2S01( and 5 mL HjPO in a closed flask swept by a purified N2 stream. The N2 stream carried the evolved C02 to an absorption solution of 0.5M Na0H-0.3M N H. After the wet combustion, the absorbed C02 was released from an aliquot of the NaOH solution with lactic acid in a manometric apparatus. Corrections were applied for the vapor pressure of water and for reagent blank. [Pg.47]

If the catalytic HBr oxidation reactor is required to serve as a central facility for recycling a variety of waste HBr streams and conditions that combust all of the organic contaminants cannot be discovered, then further bromine purification operations are probably required. The simplest operation is distillation of the bromine. Due to the high bromine vapor pressure, bromine distillation can be accomplished using relatively small equipment. This is expected to be a highly effective method of purification, particularly where the boiling points of any contaminants are greater than 10°C different from that of bromine. In other applications, absorption or extraction may be needed. [Pg.316]

The following physico-chemical properties of the analyte(s) are important in method development considerations vapor pressure, ultraviolet (UV) absorption spectrum, solubility in water and in solvents, dissociation constant(s), n-octanol/water partition coefficient, stability vs hydrolysis and possible thermal, photo- or chemical degradation. These valuable data enable the analytical chemist to develop the most promising analytical approach, drawing from the literature and from his or her experience with related analytical problems, as exemplified below. Gas chromatography (GC) methods, for example, require a measurable vapor pressure and a certain thermal stability as the analytes move as vaporized molecules within the mobile phase. On the other hand, compounds that have a high vapor pressure will require careful extract concentration by evaporation of volatile solvents. [Pg.53]

A Absorption factor in absorption (-), or annual cash flow ( ), or constant in vapor pressure correlation (N-m 2, bar), or heat exchanger area (m2)... [Pg.706]

The chlorodifluorophosphine prepared in this manner has a vapor pressure of 312.0 mm. at —63.6° (chloroform slush). The infrared spectrum of the vapor shows absorptions at the following frequencies 864.5 (s), 853.5 (vs), 543.7 (s), and 412.5 (m) cm.-1 in the 4000 to 200 cm.-1 region. Disproportionation of the liquid is fairly rapid contact of the vapor with mercury also appears to hasten disproportionation. Thus chlorodifluorophosphine is best prepared just prior to use. It may be stored at —196°. [Pg.156]


See other pages where Absorption vapor pressure is mentioned: [Pg.339]    [Pg.386]    [Pg.387]    [Pg.185]    [Pg.277]    [Pg.373]    [Pg.251]    [Pg.416]    [Pg.1118]    [Pg.83]    [Pg.464]    [Pg.131]    [Pg.250]    [Pg.6]    [Pg.116]    [Pg.634]    [Pg.256]    [Pg.54]    [Pg.109]    [Pg.160]    [Pg.158]    [Pg.296]    [Pg.109]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Absorption pressure

Carbon dioxide, absorption vapor pressure

© 2024 chempedia.info