Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption-based spectroscopic

Absorption, atmospheric gases, 217-218,219f Absorption-based spectroscopic systems, 219-229... [Pg.383]

These are analytical tools since the character of the interaction is related to the structure and composition of the materials under test. When IR radiation goes across a sample, some photons are absorbed or suffer an inelastic scattering process caused by the active vibrations of the atoms, molecules, and ions, which compose the test material. The frequencies of the absorbed, or scattered, radiation are exclusively related to a particular vibration mode. Consequently, the process reveals attributes of the test material. Subsequently, IR (absorption) and Raman (scattering) are vibration-based spectroscopic methods widely used for characterizing materials, because they allow qualitative structural information to be obtained. [Pg.157]

The infrared absorption results presented above demonstrate that it is possible to spectroscopically monitor shock induced chemical reactions on picosecond time scales at the beginning of the reaction zone. This demonstration opens the door to further probing of such events with the myriad of ultrafast laser based spectroscopic tools now available, promising to provide more insight into the effects of extreme pressure and temperature jumps at the molecular scale. [Pg.393]

A different approach to dendritic sensors involves modification of a sensor core unit with dendritic substituents to confer beneficial solubility properties. An example of a sensor core unit is the porphyrin macrocycle, a heterocycle that has been employed extensively in prototypical photochemical sensor systems. Vinogradov and co-workers have exploited the versatile photoactive porphyrin sensor unit as a fluorescence-based pH indicator for use in biological assays [73], by attaching acid terminated polyamide-ether dendrons as substituents (Figure 8.12). The two imino nitrogen atoms present in the free-base porphyrin are susceptible to stepwise protonation to afford initially a cation and then a dication, respectively. Upon protonation, both the emission and absorption fluorescence spectroscopic characteristics of the porphyrin core are subject to dramatic hypochromic shifts. This spectroscopic phenomenon formed the basis for an accurate pH indicator with potential applications in proton gradient determination studies in biological systems. [Pg.256]

Since the mid-1990s, there has been plenty of activity regarding the use of spectroscopic techniques for on-line evaluation of polymer properties [143-146]. This has been possible due to the recent development of fiber-optic probes, which allow in-situ measurements in remote and harsh environments (high temperatures, pressures, toxic environments, and so on). An additional advantage is that a fiber-optic probe can be installed in an existing reactor within a short time without expensive modifications. Fluorescent, ultraviolet (UV), infrared (IR), near-infrared (NIR), mid-infrared (MIR) and Raman spectroscopic techniques can be used for polymerization reaction monitoring. These can be divided between absorption- and emission-based techniques. IR, NIR, and MIR are absorption-based. [Pg.299]

The release of a photon following thermal excitation is called emission, and that following the absorption of a photon is called photoluminescence. In chemiluminescence and bioluminescence, excitation results from a chemical or biochemical reaction, respectively. Spectroscopic methods based on photoluminescence are the subject of Section lOG, and atomic emission is covered in Section lOH. [Pg.423]

Spectroscopic techniques based on the absorption of UV or visible radiation depend on the excitation of an electron from one quantum state to another. References in physical and/or analytical chemistry should be consulted for additional details, but the present summary is sufficient for our purposes ... [Pg.461]

It has been shown by IR-spectroscopic investigations which evidence on the appearance of new absorption bands after chitosan introducing, elementary analyses data. (N, occurrence in the samples, which quantity depends on chitosan nature and isolation conditions) It leads to significant increase of sorption capacity and specific surface of sorbents, which contain chitosan from silk waren chrysalises. Where as these parameters decrease for sorbents with chitosan from crabs. Evidently it is connected to more dense structure of the last one. It has been shown, that yield of sorbent on the base of PES and chitosan obtained by sol-gel method has depended significantly on such factors as components ratio, temperature, catalyst quantity etc. [Pg.203]

Intermediate methods include the earliest procedure based on Stein s equation [33] and one based on Samuels equation [34]. Among the direct methods is an IR spectroscopic method based on the measurement of the dichroic ratio (R), of amorphous absorption bands. In the investigations [35], the amorphous bands 898 cm" and 1368 cm", for which the angles of transition moment are a898 = 39 and aneg = 80 , respectively, were used. Other methods are spectroscopy of polarized fluorescent radiation [35,36], measurement of color di-... [Pg.847]

Nanosecond flash photolysis of 1,4-dinitro-naphthalene in aerated and deaerated solvents showed a transient species with absorption maximum at 545nm. The maximum of the transient absorption was independent of solvent polarity and its lifetime seemed to be a function of the hydrogen donor efficiency of the solvent. The transient absorption was attributed to the lowest excited triplet state of 1,4-dinitronaphthalene. Based on spectroscopic and kinetic evidence, the triplet state of 1,4-dinitronaphthalene behaved as an n - Tt state in nonpolar solvents,... [Pg.738]

Early experimental spectroscopic investigations on Rg- XY complexes resulted in contradictory information regarding the interactions within them and their preferred geometries. Rovibronic absorption and LIF spectra revealed T-shaped excited- and ground-state configurations, wherein the Rg atom is confined to a plane perpendicular to the X—Y bond [10, 19, 28-30]. While these results were supported by the prediction of T-shaped structures based on pairwise additive Lennard-Jones or Morse atom-atom potentials, they seemed to be at odds with results from microwave spectroscopy experiments that were consistent with linear ground-state geometries [31, 32]. Some attempts were made to justify the contradictory results of the microwave and optical spectroscopic studies, and... [Pg.379]

In the preceding section, we presented principles of spectroscopy over the entire electromagnetic spectrum. The most important spectroscopic methods are those in the visible spectral region where food colorants can be perceived by the human eye. Human perception and the physical analysis of food colorants operate differently. The human perception with which we shall deal in Section 1.5 is difficult to normalize. However, the intention to standardize human color perception based on the abilities of most individuals led to a variety of protocols that regulate in detail how, with physical methods, human color perception can be simulated. In any case, a sophisticated instrumental set up is required. We present certain details related to optical spectroscopy here. For practical purposes, one must discriminate between measurements in the absorbance mode and those in the reflection mode. The latter mode is more important for direct measurement of colorants in food samples. To characterize pure or extracted food colorants the absorption mode should be used. [Pg.14]

There are single- and multiparameter approaches for determining the polarity and separation of contribution of different interactions to the total effect of polarity on spectroscopic characteristics. They are based on different theories of solvatochromic shifts of absorption and fluorescence bands. [Pg.207]


See other pages where Absorption-based spectroscopic is mentioned: [Pg.343]    [Pg.128]    [Pg.343]    [Pg.128]    [Pg.541]    [Pg.459]    [Pg.516]    [Pg.54]    [Pg.102]    [Pg.6066]    [Pg.604]    [Pg.605]    [Pg.357]    [Pg.401]    [Pg.446]    [Pg.584]    [Pg.26]    [Pg.98]    [Pg.108]    [Pg.208]    [Pg.738]    [Pg.3]    [Pg.4]    [Pg.185]    [Pg.189]    [Pg.54]    [Pg.574]    [Pg.148]    [Pg.46]    [Pg.346]    [Pg.94]    [Pg.473]    [Pg.141]    [Pg.49]    [Pg.70]    [Pg.325]    [Pg.728]    [Pg.147]    [Pg.25]   


SEARCH



Absorption spectroscop

© 2024 chempedia.info