Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absolute refractive index detectors

The vast majority of refractive index detectors are differential detectors where the refractive index of the sample is measured relative to a reference liquid. This enables them to be used in a wide range of applications but requires a fairly delicate flow cell. Absolute refractive index detectors are available which although only covering a limited range and less sensitive, are more robust and have sensor probes which can be easily inserted in the process stream. These are especially suited to explosion proof applications. [Pg.21]

Sample preparation, injection, calibration, and data collection, must be automated for process analysis. Methods used for flow injection analysis (FLA) are also useful for reliable sampling for process LC systems.1 Dynamic dilution is a technique that is used extensively in FIA.13 In this technique, sample from a loop or slot of a valve is diluted as it is transferred to a HPLC injection valve for analysis. As the diluted sample plug passes through the HPLC valve it is switched and the sample is injected onto the HPLC column for separation. The sample transfer time typically is determined with a refractive index detector and valve switching, which can be controlled by an integrator or computer. The transfer time is very reproducible. Calibration is typically done by external standardization using normalization by response factor. Internal standardization has also been used. To detect upsets or for process optimization, absolute numbers are not always needed. An alternative to... [Pg.76]

Other analysis methods dependent on multiple detectors can be implemented using this automated system. Two methods under development are the use of a continuous viscometer detector with a refractive index detector to yield absolute molecular weight and branching, utilizing the universal calibration curve concept (4), and the use of a UV or IR detector with the refractive index detector to measure compositional distribution as a function of molecular weight. [Pg.63]

From the Th-FFF retention data, it is possible to obtain a molar mass distribution after a suitable calibration for the determination of the Mark-Houwink constants (straight-line plot of log(D/DT) vs. log M [15]). Another possibility is to couple an absolute molar mass detector like MALLS (see Sect. 4.3.2) or a suitable detector combination such as an on-line viscometer coupled with a refractive index detector. This possibility does not require prior knowledge of DT... [Pg.145]

Absolute MWD can be measured using light scattering or viscometry combined with universal calibration. Compositional drift over the MWD of a polymer can be measured using a UV spectrophotometer and a differential refractive index detector. The increase in the available information also expands the complexity of data analysis. We discuss some of the concerns regarding data analysis that arise in multidetector SEC. [Pg.60]

This type of measurements can very elegantly be realized online by coupling several detectors at the end of the SEC column such as a concentration detector (refractive index detector, spectrophotometric detector, etc.) and an absolute detector measuring the molar mass or related property of the separated species such as laser light scattering detector or capillary viscometer detector. These modern sophisticated separation systems allow not only the separation of the analyzed species but also their very detailed analysis and characterization as concerns the MMD or PSD, as well as other structural and compositional characteristics of simple polymers, co-polymers, etc. A schematic representation of a procedure of SEC data treatment from an experimental chromatogram to the final MMD or PSD data is shown in Figure 8. [Pg.2601]

Synthetic, nonionic polymers generally elute with little or no adsorption on TSK-PW columns. Characterization of these polymers has been demonstrated successfully using four types of on-line detectors. These include differential refractive index (DRI), differential viscometry (DV), FALLS, and MALLS detection (4-8). Absolute molecular weight, root mean square (RMS) radius of gyration, conformational coefficients, and intrinsic viscosity distributions have... [Pg.562]

Several kinds of detection systems have been applied to CE [1,2,43]. Based on their specificity, they can be divided into bulk property and specific property detectors [43]. Bulk-property detectors measure the difference in a physical property of a solute relative to the background. Examples of such detectors are conductivity, refractive index, indirect methods, etc. The specific-property detectors measure a physico-chemical property, which is inherent to the solutes, e.g. UV absorption, fluorescence emission, mass spectrum, electrochemical, etc. These detectors usually minimize background signals, have wider linear ranges and are more sensitive. In Table 17.3, a general overview is given of the detection methods that are employed in CE with their detection limits (absolute and relative). [Pg.603]

The concentration of the polymer molecules eluting from SEC columns is continuously monitored by a detector. The most widely used detector in SEC is the differential reftactometer (DRI), which measures the difference in refractive index between solvent and solute. Other detectors commonly used for SEC are functional group detectors ultraviolet (UV) and infrared (IR), and absolute molecular weight detectors low angle laser light scattering (LALLS) and in-line continuous viscometers. Applications of these detectors to SEC analysis will be discussed later in the Multiple Detectors Section. Other detectors also being used are the densimeter (11-19) and the mass detector (20-23). [Pg.5]

GPC is a relative method, especially for UV and refractive index (RI) detectors, and must be calibrated using polymer standards whose molecular weight has been determined using absolute methods such as intrinsic viscosity or light scattering. Consequently, the accuracy is relative to the calibration. [Pg.146]


See other pages where Absolute refractive index detectors is mentioned: [Pg.261]    [Pg.290]    [Pg.355]    [Pg.357]    [Pg.234]    [Pg.66]    [Pg.197]    [Pg.198]    [Pg.483]    [Pg.261]    [Pg.101]    [Pg.1308]    [Pg.22]    [Pg.29]    [Pg.559]    [Pg.999]    [Pg.3375]    [Pg.3385]    [Pg.190]    [Pg.411]    [Pg.116]    [Pg.128]    [Pg.260]    [Pg.281]    [Pg.113]    [Pg.237]    [Pg.391]    [Pg.235]    [Pg.259]    [Pg.42]    [Pg.246]    [Pg.104]    [Pg.257]    [Pg.65]    [Pg.167]    [Pg.131]    [Pg.625]    [Pg.518]    [Pg.747]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Absolute refractive index

Detector INDEX

Detector absolute

Detectors refraction index

Detectors refractive index detector

Refractive index detector

© 2024 chempedia.info