Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A Supercritical-Fluid Chromatography

Recently additional measurements on some of these anthraquinone dyes were carried out with a dynamic method using a supercritical fluid chromatography (SFC) technique. This method permits the measurement of solubilities as well as the continuous purification from better soluble impurities which might cause serious errors in the solubility data (see section 3.). [Pg.259]

Lesellier, E. and Tchapla, A., Supercritical fluid chromatography with organic modifiers on oc-... [Pg.1007]

List the types of substances to which each of the following separation methods is most applicable (a) supercritical-fluid chromatography (b) thin-layer chromatography (c) capillary zone electrophoresis (d) thermal FFF (e) flow FFF... [Pg.1018]

Garzotti, M. Rovatti, L. Hamdan, M. Coupling of a Supercritical Fluid Chromatography System to a Hybrid (Q-TOF 2) Mass Spectrometer On-line Accurate Mass Measurements, Rapid Commun. Mass Spectrom. 15, 1187-1190 (2001). [Pg.226]

Camel V, Thiebaut D, Caude M, Dreux M. Packed column subcritical fluid chromatography of underivatized amino acids. J Chromatogr 1992 605 95-101. Anton K, Bach M, Geiser A. Supercritical fluid chromatography in the routine stability control of antipruritic preparations. J Chromatogr 1991 553 71-79. Giddings JC, Meyers M, Wahrhaftig AL. Int J Mass Spectrom Ion Physi 1970 4 9-20. [Pg.536]

Leselher, E. Tchapla, A. Supercritical fluid chromatography with organic modifiers on octadecyl packed columns recent 11. developments for the analysis of high molecular organic compounds. In Supercritical Fluid Chromatography with Packed Columns, Anton, K., Berger, C., Eds. Marcel Dekker, Inc. New York, 1998 195-221. 12. [Pg.1522]

Liquid phase chromatography can use a supercritical fluid as an eluent. The solvent evaporates on leaving the column and allows detection by FID. At present, there are few instances in the petroleum industry using the supercritical fluid technique. [Pg.27]

The most common mobile phase for supercritical fluid chromatography is CO2. Its low critical temperature, 31 °C, and critical pressure, 72.9 atm, are relatively easy to achieve and maintain. Although supercritical CO2 is a good solvent for nonpolar organics, it is less useful for polar solutes. The addition of an organic modifier, such as methanol, improves the mobile phase s elution strength. Other common mobile phases and their critical temperatures and pressures are listed in Table 12.7. [Pg.596]

SFC/MS. supercritical fluid chromatography and mass spectrometry used as a combined technique SID. surface-induced dissociation (or decomposition)... [Pg.446]

Mixtures can be identified with the help of computer software that subtracts the spectra of pure compounds from that of the sample. For complex mixtures, fractionation may be needed as part of the analysis. Commercial instmments are available that combine ftir, as a detector, with a separation technique such as gas chromatography (gc), high performance Hquid chromatography (hplc), or supercritical fluid chromatography (96,97). Instmments such as gc/ftir are often termed hyphenated instmments (98). Pyrolyzer (99) and thermogravimetric analysis (tga) instmmentation can also be combined with ftir for monitoring pyrolysis and oxidation processes (100) (see Analytical methods, hyphenated instruments). [Pg.315]

Supercritical Fluid Chromatography. Supercritical fluid chromatography (sfc) combines the advantages of gc and hplc in that it allows the use of gc-type detectors when supercritical fluids are used instead of the solvents normally used in hplc. Carbon dioxide, -petane, and ammonia are common supercritical fluids (qv). For example, carbon dioxide (qv) employed at 7.38 MPa (72.9 atm) and 31.3°C has a density of 448 g/mL. [Pg.247]

Cyclopentadiene oligomers up to octamers can be effectively analy2ed and quantified by supercritical fluid chromatography using a chemically bonded methyl siUcone capillary column. [Pg.430]

T. A. Berger, Practical advantages of packed column supercritical fluid chromatography in supporting combinations chemistiy , in Unified Chromatography, J. P. Parcher and T. L. Chester (Eds), ACS Symposium Series 748, American Chemical Society, Washington, DC, pp. 203-233 (2000). [Pg.168]

A method which uses supercritical fluid/solid phase extraction/supercritical fluid chromatography (SE/SPE/SEC) has been developed for the analysis of trace constituents in complex matrices (67). By using this technique, extraction and clean-up are accomplished in one step using unmodified SC CO2. This step is monitored by a photodiode-array detector which allows fractionation. Eigure 10.14 shows a schematic representation of the SE/SPE/SEC set-up. This system allowed selective retention of the sample matrices while eluting and depositing the analytes of interest in the cryogenic trap. Application to the analysis of pesticides from lipid sample matrices have been reported. In this case, the lipids were completely separated from the pesticides. [Pg.241]

An on-line supercritical fluid chromatography-capillary gas chromatography (SFC-GC) technique has been demonstrated for the direct transfer of SFC fractions from a packed column SFC system to a GC system. This technique has been applied in the analysis of industrial samples such as aviation fuel (24). This type of coupled technique is sometimes more advantageous than the traditional LC-GC coupled technique since SFC is compatible with GC, because most supercritical fluids decompress into gases at GC conditions and are not detected by flame-ionization detection. The use of solvent evaporation techniques are not necessary. SFC, in the same way as LC, can be used to preseparate a sample into classes of compounds where the individual components can then be analyzed and quantified by GC. The supercritical fluid sample effluent is decompressed through a restrictor directly into a capillary GC injection port. In addition, this technique allows selective or multi-step heart-cutting of various sample peaks as they elute from the supercritical fluid... [Pg.325]

Figure 12.20 SFC-GC analysis of a sample of aviation fuel (a) SFC separation into two peaks (b and c) coixesponding GC ttaces of the respective peaks (flame-ionization detection used throughout). Reprinted from Journal of High Resolution Chromatography, 10, J. M. Levy et ah, On-line multidimensional supercritical fluid chromatography/capillary gas chromatography , pp. 337-341, 1987, with permission from Wiley-VCH. Figure 12.20 SFC-GC analysis of a sample of aviation fuel (a) SFC separation into two peaks (b and c) coixesponding GC ttaces of the respective peaks (flame-ionization detection used throughout). Reprinted from Journal of High Resolution Chromatography, 10, J. M. Levy et ah, On-line multidimensional supercritical fluid chromatography/capillary gas chromatography , pp. 337-341, 1987, with permission from Wiley-VCH.
Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc. Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc.
Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society. Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society.
Figure 12.24 Schematic diagram of the multidimensional packed capillary to open tubular column SFC-SFC system. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al., Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switching interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society. Figure 12.24 Schematic diagram of the multidimensional packed capillary to open tubular column SFC-SFC system. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al., Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switching interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society.
Figure 15.13 Comprehensive two-dimensional GC chromatogram of a supercritical fluid exti act of spiked human semm. Peak identification is as follows 1, dicamha 2, tiifluralin 3, dicliloran 4, phorate 5, pentachlorophenol 6, atrazine 7, fonofos 8, diazinon 9, cWorothalonil 10, terhufos 11, alachlor 12, matalaxyl 13, malathion 14, metalochlor 15, DCPA 16, captan 17, folpet 18, heptadecanoic acid. Adapted imm Analytical Chemistry, 66, Z. Liu et al., Comprehensive two-dimensional gas chromatography for the fast separation and determination of pesticides exuacted from human senim , pp. 3086-3092, copyright 1994, with pemiission from the American Chemical Society. Figure 15.13 Comprehensive two-dimensional GC chromatogram of a supercritical fluid exti act of spiked human semm. Peak identification is as follows 1, dicamha 2, tiifluralin 3, dicliloran 4, phorate 5, pentachlorophenol 6, atrazine 7, fonofos 8, diazinon 9, cWorothalonil 10, terhufos 11, alachlor 12, matalaxyl 13, malathion 14, metalochlor 15, DCPA 16, captan 17, folpet 18, heptadecanoic acid. Adapted imm Analytical Chemistry, 66, Z. Liu et al., Comprehensive two-dimensional gas chromatography for the fast separation and determination of pesticides exuacted from human senim , pp. 3086-3092, copyright 1994, with pemiission from the American Chemical Society.
The coupling of supercritical fluid extraction (SEE) with gas chromatography (SEE-GC) provides an excellent example of the application of multidimensional chromatography principles to a sample preparation method. In SEE, the analytical matrix is packed into an extraction vessel and a supercritical fluid, usually carbon dioxide, is passed through it. The analyte matrix may be viewed as the stationary phase, while the supercritical fluid can be viewed as the mobile phase. In order to obtain an effective extraction, the solubility of the analyte in the supercritical fluid mobile phase must be considered, along with its affinity to the matrix stationary phase. The effluent from the extraction is then collected and transferred to a gas chromatograph. In his comprehensive text, Taylor provides an excellent description of the principles and applications of SEE (44), while Pawliszyn presents a description of the supercritical fluid as the mobile phase in his development of a kinetic model for the extraction process (45). [Pg.427]

Supercritical fluid chromatography (SFC) refers to the use of mobile phases at temperatures and pressures above the critical point (supercritical) or just below (sub-critical). SFC shows several features that can be advantageous for its application to large-scale separations [132-135]. One of the most interesting properties of this technique is the low viscosity of the solvents used that, combined with high diffusion coefficients for solutes, leads to a higher efficiency and a shorter analysis time than in HPLC. [Pg.12]

Supercritical fluid chromatography (SFC) provides a means of minimizing the limitations of CSPs developed for FC while retaining the impressive chiral selectivity that has been achieved through the evolution of CSPs during the past two decades [6, 7]. The use of supercritical fluids as eluents for chromatographic separations was... [Pg.299]

A number of analytical techniques such as FTIR spectroscopy,65-66 13C NMR,67,68 solid-state 13 C NMR,69 GPC or size exclusion chromatography (SEC),67-72 HPLC,73 mass spectrometric analysis,74 differential scanning calorimetry (DSC),67 75 76 and dynamic mechanical analysis (DMA)77 78 have been utilized to characterize resole syntheses and crosslinking reactions. Packed-column supercritical fluid chromatography with a negative-ion atmospheric pressure chemical ionization mass spectrometric detector has also been used to separate and characterize resoles resins.79 This section provides some examples of how these techniques are used in practical applications. [Pg.407]

The submitters determined the crystalline hydroxy esters to be >99.9% diastereomerically pure by supercritical fluid chromatography (EMdiol silica column and a Chiralcel (+) OD-(H) column (Chiral... [Pg.95]


See other pages where A Supercritical-Fluid Chromatography is mentioned: [Pg.359]    [Pg.823]    [Pg.37]    [Pg.11]    [Pg.359]    [Pg.823]    [Pg.37]    [Pg.11]    [Pg.596]    [Pg.597]    [Pg.779]    [Pg.201]    [Pg.546]    [Pg.225]    [Pg.226]    [Pg.105]    [Pg.1]    [Pg.4]    [Pg.141]    [Pg.147]    [Pg.152]    [Pg.284]    [Pg.324]    [Pg.333]    [Pg.391]    [Pg.89]   


SEARCH



Supercritical chromatography

Supercritical fluid chromatography

© 2024 chempedia.info