Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc chains

Applications of the Boron-Zinc Chain Reaction and the Diastereoselective Migration of Organoboranes... [Pg.33]

Lewis acids such as zinc triflate[16] and BF3[17] have been used to effect the reaction of indole with jV-proiected aziridine-2-carboxylate esters. These alkylations by aziridines constitute a potential method for the enantioselective introduction of tryptophan side-chains in a single step. (See Chapter 13 for other methods of synthesis of tryptophans.)... [Pg.107]

Chain transfer is an important consideration in solution polymerizations. Chain transfer to solvent may reduce the rate of polymerization as well as the molecular weight of the polymer. Other chain-transfer reactions may iatroduce dye sites, branching, chromophoric groups, and stmctural defects which reduce thermal stabiUty. Many of the solvents used for acrylonitrile polymerization are very active in chain transfer. DMAC and DME have chain-transfer constants of 4.95-5.1 x lO " and 2.7-2.8 x lO " respectively, very high when compared to a value of only 0.05 x lO " for acrylonitrile itself DMSO (0.1-0.8 X lO " ) and aqueous zinc chloride (0.006 x lO " ), in contrast, have relatively low transfer constants hence, the relative desirabiUty of these two solvents over the former. DME, however, is used by several acryhc fiber producers as a solvent for solution polymerization. [Pg.277]

Typically, soHd stabilizers utilize natural saturated fatty acid ligands with chain lengths of Cg—C g. Ziac stearate [557-05-1/, ziac neodecanoate [27253-29-8] calcium stearate [1592-23-0] barium stearate [6865-35-6] and cadmium laurate [2605-44-9] are some examples. To complete the package, the soHd products also contain other soHd additives such as polyols, antioxidants, and lubricants. Liquid stabilizers can make use of metal soaps of oleic acid, tall oil acids, 2-ethyl-hexanoic acid, octylphenol, and nonylphenol. Barium bis(nonylphenate) [41157-58-8] ziac 2-ethyIhexanoate [136-53-8], cadmium 2-ethyIhexanoate [2420-98-6], and overbased barium tallate [68855-79-8] are normally used ia the Hquid formulations along with solubilizers such as plasticizers, phosphites, and/or epoxidized oils. The majority of the Hquid barium—cadmium formulations rely on barium nonylphenate as the source of that metal. There are even some mixed metal stabilizers suppHed as pastes. The U.S. FDA approved calcium—zinc stabilizers are good examples because they contain a mixture of calcium stearate and ziac stearate suspended ia epoxidized soya oil. Table 4 shows examples of typical mixed metal stabilizers. [Pg.550]

Some metals used as metallic coatings are considered nontoxic, such as aluminum, magnesium, iron, tin, indium, molybdenum, tungsten, titanium, tantalum, niobium, bismuth, and the precious metals such as gold, platinum, rhodium, and palladium. However, some of the most important poUutants are metallic contaminants of these metals. Metals that can be bioconcentrated to harmful levels, especially in predators at the top of the food chain, such as mercury, cadmium, and lead are especially problematic. Other metals such as silver, copper, nickel, zinc, and chromium in the hexavalent oxidation state are highly toxic to aquatic Hfe (37,57—60). [Pg.138]

For increased solubiHty to prevent bloom, shorter-chain carboxyHc acids or zinc carboxylates can be substituted. The use of chain-branched carboxyHc acids reduces the tendency for the formulations to lose sulfur cross-links or revert upon prolonged heating (7). Translucent articles such as crepe soles can use a zinc carboxylate or employ zinc carbonate as a transparent zinc oxide. [Pg.225]

The traveling-grate furnace requires less labor, increases the output per unit of grate area, and produces more uniform product than the WetheriU. furnaces. The traveling grate is an endless chain of cast-iron bars, driven by sprockets, which traverses a firebrick chamber. Anthracite briquettes are fed to a depth of ca 15 cm. After ignition by the previous charge, the coal briquettes are covered by 15—16.5 cm of ore/coal briquettes. The latter are dried with waste heat from the furnace. Zinc vapor evolves and bums in a combustion chamber and the spent clinker faUs into containers for removal (24,25). [Pg.421]

Vulcanization. Some of the chlorine atoms along the chain (1,2 units) are very labile and reactive, and provide excellent sites for cross-linking. Hence neoprene is not vulcanized by sulfur but by metal oxides, eg, magnesium and zinc oxides, although sulfur is generally included in the compound to control the rate of vulcanization. [Pg.470]

Side chain reactivity is also enhanced and is typified by the difference in reactivity of 2-methylpyrazine and 2-methylpyrazine 1,4-dioxide towards anion formation and subsequent condensation reactions. 2-Methylpyrazine undergoes condensation with benzal-dehyde at 180 °C, with zinc chloride catalysis, to yield the styrylpyrazine (58), whereas the corresponding reaction of 2-methylpyrazine 1,4-dioxide proceeds at 25 °C under base catalysis (67KGS419). [Pg.173]

The side chains of the 20 different amino acids listed in Panel 1.1 (pp. 6-7) have very different chemical properties and are utilized for a wide variety of biological functions. However, their chemical versatility is not unlimited, and for some functions metal atoms are more suitable and more efficient. Electron-transfer reactions are an important example. Fortunately the side chains of histidine, cysteine, aspartic acid, and glutamic acid are excellent metal ligands, and a fairly large number of proteins have recruited metal atoms as intrinsic parts of their structures among the frequently used metals are iron, zinc, magnesium, and calcium. Several metallo proteins are discussed in detail in later chapters and it suffices here to mention briefly a few examples of iron and zinc proteins. [Pg.11]

Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)... Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)...
Many proteins contain intrinsic metal atoms that are functionally important. The most frequently used metals are iron, zinc, magnesium, and calcium. These metal atoms are mainly bound to the protein through the side chains of cysteine, histidine, aspartic acid, and glutamic acid residues. [Pg.12]

Figure 4.19 Schematic and topological diagrams for the structure of the enzyme carboxypeptidase. The central region of the mixed p sheet contains four adjacent parallel p strands (numbers 8, 5, 3, and 4), where the strand order is reversed between strands 5 and 3. The active-site zinc atom (yellow circle) is bound to side chains in the loop regions outside the carboxy ends of these two p strands. The first part of the polypeptide chain is red, followed by green, blue, and brown. (Adapted from J. Richardson.)... Figure 4.19 Schematic and topological diagrams for the structure of the enzyme carboxypeptidase. The central region of the mixed p sheet contains four adjacent parallel p strands (numbers 8, 5, 3, and 4), where the strand order is reversed between strands 5 and 3. The active-site zinc atom (yellow circle) is bound to side chains in the loop regions outside the carboxy ends of these two p strands. The first part of the polypeptide chain is red, followed by green, blue, and brown. (Adapted from J. Richardson.)...
This is precisely where the catalytically essential zinc atom is found. This zinc atom is located precisely at this switch point, where it is firmly anchored to the protein by three side-chain ligands, His 69, Glu 72, and His 196 (Figure 4.20). The last residue of p strand 3 is residue 66, so the two zinc ligands His 69 and Glu 72 are at the beginning of the loop region that connects this p strand with its corresponding a helix. The last residue of p strand 5 is the third zinc ligand. His 196. [Pg.62]

The 12 residues between the second cysteine zinc ligand and the first histidine ligand of the classic zinc finger motif form the "finger region". Structurally, this region comprises the second p strand, the N-terminal half of the helix and the two residues that form the turn between the p strand and the helix. This is the region of the polypeptide chain that forms the main interaction area with DNA and these interactions are both sequence specific. [Pg.178]

Figure 10.4 Detailed view of the binding of the second zinc finger of Zif 268 to DNA. Two side chains, Arg 46 and His 49, form sequence-specific interactions with DNA. There are also three nonspecific interactions between phosphate groups of the DNA and the side chains of Arg 42, Ser 45, and His 53. Figure 10.4 Detailed view of the binding of the second zinc finger of Zif 268 to DNA. Two side chains, Arg 46 and His 49, form sequence-specific interactions with DNA. There are also three nonspecific interactions between phosphate groups of the DNA and the side chains of Arg 42, Ser 45, and His 53.

See other pages where Zinc chains is mentioned: [Pg.404]    [Pg.712]    [Pg.404]    [Pg.712]    [Pg.386]    [Pg.146]    [Pg.146]    [Pg.1021]    [Pg.205]    [Pg.284]    [Pg.546]    [Pg.266]    [Pg.245]    [Pg.246]    [Pg.373]    [Pg.10]    [Pg.202]    [Pg.226]    [Pg.433]    [Pg.28]    [Pg.414]    [Pg.233]    [Pg.469]    [Pg.306]    [Pg.200]    [Pg.380]    [Pg.11]    [Pg.168]    [Pg.169]    [Pg.170]    [Pg.171]    [Pg.175]    [Pg.176]    [Pg.176]    [Pg.177]    [Pg.179]    [Pg.179]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Chain growth on zinc

© 2024 chempedia.info