Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolites adsorption and

Ba-Modenite s selectivity to MX is higher than OX, but the opposite is true for BaY. This reversal in selectivity is a result of differences in adsorbent framework characteristics mordenite has higher acid strength compared to Y zeolite. Adsorption and desorption rates of xylenes are expected to be faster in BaY compared to Ba-Mordenite because Mordenite is a one-dimensional channel system while Y zeoUte is a three-dimensional channel. With the reason stated, a three-dimensional channel ZeoUte is the preferred mass separating agent of choice compared to one-or two-dimensional channels for the liquid adsorption separation. [Pg.212]

Herance, J.R., Concepcion, P., Domenech, A., Bourdelande, J.L., Marquet, J., and Garcia, H. 2005. Anionic organic guests incorporated within zeolites. Adsorption and reactivity of the Meisenheimer complex in faujasites. Chemistry A European Journal 11, 6491-6502. [Pg.287]

This variation in polarity can also have an influence on the way in which organic molecules and their reaction products are attracted to the inner surfaces of the pores and cavities of zeolites (adsorption) and released from them (desorption). [Pg.236]

For a polar surface and molecules with permanent dipole moments, attraction is strong, as for water adsorption on a hydrophilic adsorbent. Similarly, for a polar surface, a molecule with a permanent quadrupole moment vidll be attracted more strongly than a similar molecule with a weaker moment for example, nitrogen is adsorbed more strongly than oxygen on zeolites (Sherman and Yon, gen. refs.). [Pg.1503]

Upon calcination the template is removed and the zeolite s well-defined pores are available for adsorption and catalysis. Particularly challenging is the field of electrophilic aromatic substitution. Here often non-regenerable metal chlorides serve as the catalyst in present industrial practice. Zeolites are about to take over the job and in fact are doing so for aromatic alkylation. [Pg.202]

In order to get the pore system of zeolites available for adsorption and catalysis the template molecules have to be removed. This is generally done by calcination in air at temperatures up to 500 °C. A careful study (ref. 12) of the calcination of as-synthesized TPA-containing MFI-type single crystals by infrared spectroscopy and visible light microscopy showed that quat decomposition sets in around 350 °C. Sometimes special techniques are required, e.g. heating in an ammonia atmosphere (ref. 13) in the case of B-MFI (boron instead of aluminum present) to prevent loss of crystallinity of the zeolite during template quat removal. [Pg.208]

Table 1.2 Calculated heats of adsorption and adsorption constants for various hydrocarbons in zeolites with different channel dimensions. Table 1.2 Calculated heats of adsorption and adsorption constants for various hydrocarbons in zeolites with different channel dimensions.
Three different ways in which a zeolite membrane can contribute to a better sensor performance can be distinguished (i) the add-on selective adsorption or molecular sieving layer to the sensor improves selectivity and sensitivity, (ii) the zeolite layer acts as active sensing material and adds the selective adsorption and molecular sieving properties to this, and (iii) the zeohte membrane adds a catalytically active layer to the sensor, improving the selectivity by specific reactions. [Pg.227]

In order to design a zeoHte membrane-based process a good model description of the multicomponent mass transport properties is required. Moreover, this will reduce the amount of practical work required in the development of zeolite membranes and MRs. Concerning intracrystaUine mass transport, a decent continuum approach is available within a Maxwell-Stefan framework for mass transport [98-100]. The well-defined geometry of zeoHtes, however, gives rise to microscopic effects, like specific adsorption sites and nonisotropic diffusion, which become manifested at the macroscale. It remains challenging to incorporate these microscopic effects into a generalized model and to obtain an accurate multicomponent prediction of a real membrane. [Pg.231]

Shape selective catalysis as typically demonstrated by zeolites is of great interest from scientific as well as industrial viewpoint [17], However, the application of zeolites to organic reactions in a liquid-solid system is very limited, because of insufficient acid strength and slow diffusion of reactant molecules in small pores. We reported preliminarily that the microporous Cs salts of H3PW12O40 exhibit shape selectivity in a liquid-solid system [18]. Here we studied in more detail the acidity, micropore structure and catal3rtic activity of the Cs salts and wish to report that the acidic Cs salts exhibit efficient shape selective catalysis toward decomposition of esters, dehydration of alcohol, and alkylation of aromatic compound in liquid-solid system. The results were discussed in relation to the shape selective adsorption and the acidic properties. [Pg.582]

Montanari el al., for example, studied a Co—H-MFI sample through FT-IR spectroscopy of in situ adsorption and coadsorption of probe molecules [o-toluonitrile (oTN), CO and NO] and CH4-SCR process tests under IR operando conditions. The oTN adsorption and the oTN and NO coadsorption showed that both Co2+ and Co3+ species are present on the catalyst surface. Co3+ species are located inside the zeolitic channels while Co2+ ions are distributed both at the external and at the internal surfaces. The operando study showed the activity of Co3+ sites in the reaction. The existence of three parallel reactions, CH4-SCR, CH4 total oxidation and NO to NOz oxidation, was also confirmed. Isocyanate species and nitrate-like species appear to be intermediates of CH4-SCR and NO oxidation, respectively. A mechanism for CH4-SCR has been proposed. On the contrary, Co2+ substitutional sites, very evident and predominant in the catalyst, which are very hardly reducible, seemed not to play a key role in the SCR process [173],... [Pg.128]

Pure Ti02 was recently reported to be active in the disinfection of water contaminated by spores of the type Fusarium solani [142], Bacillus anthracis [143], or Cryptosporidium parvum oocysts [144], or when supported as nanocomposites on zeolite H(i for E. coli deactivation [145], and it found applications in water treatment as a replacement for chlorine. Ag-Ti02 immobilized systems were used for inactivation of bacteria, coupling the visible light response of the system and the strong bactericidal effect of Ag [146]. Silver was deposited on hydroxyapatite to form nanocomposites with a high capacity for bacterial adsorption and inactivation [147], or used for airborne bacterial remediation in indoor air [148],... [Pg.107]

For both structures, all final Si positions were obtained with reasonable accuracy (0.1 -0.2 A) by a 3D reconstruction of HRTEM images followed by a distance least-squares refinement. This kind of accuracy is sufficient for normal property analysis, such as catalysis, adsorption and separation, and as a starting point for structure refinement with X-ray powder diffraction data. The technique demonstrated here is general and can be applied not only to zeolites, but also to other complicated crystal structures. [Pg.52]

D correlation analysis is a powerful tool applicable to the examination of data obtained from infrared spectroscopy. The correlation intensities, displayed in the form of 2D maps, allow us to correlate the shift induced by CO adsorption and acidity of sites in dealuminated zeolites. Results are in accordance with previous results, obtained using only IR measurements, proving the validity of this technique. New correlations allowed the assignment of very complex groups of bands, and 2D correlation revealed itself as a great help for understanding acidity in dealuminated zeolites. 2D correlation has allowed us to validate the model obtained by NMR. [Pg.64]

In this communication a study of the catalytic behavior of the immobilized Rhizomucor miehei lipase in the transesterification reaction to biodiesel production has been reported. The main drawbacks associated to the current biodiesel production by basic homogeneous catalysis could be overcome by using immobilized lipases. Immobilization by adsorption and entrapment have been used as methods to prepare the heterogeneous biocatalyst. Zeolites and related materials have been used as inorganic lipase supports. To promote the enzyme adsorption, the surface of the supports have been functionalized by synthesis procedures or by post-treatments. While, the enzyme entrapping procedure has been carried out by sol-gel method in order to obtain the biocatalyst protected by a mesoporous matrix and to reduce its leaching after several catalytic uses. [Pg.257]


See other pages where Zeolites adsorption and is mentioned: [Pg.4]    [Pg.13]    [Pg.115]    [Pg.4]    [Pg.13]    [Pg.115]    [Pg.465]    [Pg.288]    [Pg.449]    [Pg.1543]    [Pg.1547]    [Pg.1547]    [Pg.17]    [Pg.227]    [Pg.186]    [Pg.172]    [Pg.425]    [Pg.250]    [Pg.403]    [Pg.125]    [Pg.137]    [Pg.388]    [Pg.121]    [Pg.31]    [Pg.69]    [Pg.74]    [Pg.93]    [Pg.100]    [Pg.107]    [Pg.108]    [Pg.121]    [Pg.125]    [Pg.170]    [Pg.222]    [Pg.341]    [Pg.341]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Adsorption at surfaces and in zeolites

Hydrophobic zeolites and adsorption

© 2024 chempedia.info