Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

XPS sensitivity

Experimental Calibration on Pure Sulfuric Acid. To ensure the validity of the surface science techniques employed it is important to establish a reliable stoichiometric calibration. Figure 2, which shows AES and XPS spectra of sulfuric acid under conditions of Ph2o < 1 x 10 Torr and T = 290K refers to a liquid which is > 99.99% pure sulfuric acid (10). Consequently the measured S 0 ratio, (S/0)exp, should reflect the inherent 1 4 S 0 stoichiometry, (S/0) s ich., modified by the influence of the relevant AES and XPS sensitivities (Sg and Sq) (ii) in addition to the mean free paths (Xg and Xq ) associated with the secondary electrons of these two chemical elements (12). This can be expressed in the form ... [Pg.109]

Because a set of binding energies is characteristic for an element, XPS can analyse chemical composition. Almost all photoelectrons used in laboratory XPS have kinetic energies in the range of 0.2 to 1.5 keV, and probe the outer layers of tire sample. The mean free path of electrons in elemental solids depends on the kinetic energy. Optimum surface sensitivity is achieved with electrons at kinetic energies of 50-250 eV, where about 50% of the electrons come from the outennost layer. [Pg.1854]

Owing to the limited escape depth of photoelectrons, the surface sensitivity of XPS can be enlianced by placing the analyser at an angle to the surface nonnal (the so-called take-off angle of the photoelectrons). This can be used to detemiine the thickness of homogeneous overlayers on a substrate. [Pg.1857]

Figure Bl.25.5. (a) XPS spectra at take-off angles of 0° and 60° as measured from the surface nonnal from a silicon crystal with a thin layer of Si02 on top. The relative intensity of the oxide signal increases significantly at higher take-off angles, illustrating that the surface sensitivity of XPS increases, (b) Plot of... Figure Bl.25.5. (a) XPS spectra at take-off angles of 0° and 60° as measured from the surface nonnal from a silicon crystal with a thin layer of Si02 on top. The relative intensity of the oxide signal increases significantly at higher take-off angles, illustrating that the surface sensitivity of XPS increases, (b) Plot of...
Sensitive materials, such as metal salts or organometallic compounds, may decompose during XPS analysis, particularly when a standard x-ray source is used. Apart from the x-rays themselves, heat and electrons from the source may cause damage to the samples. In such cases, a monoclnomated x-ray source can offer a... [Pg.1857]

The strong point of AES is that it provides a quick measurement of elements in the surface region of conducting samples. For elements having Auger electrons with energies hr the range of 100-300 eV where the mean free path of the electrons is close to its minimum, AES is considerably more surface sensitive than XPS. [Pg.1859]

Both UPS and XPS of solids are useful techniques. So far as studies of adsorption by surfaces are concerned we would expect UPS, involving only valence orbitals, to be more sensitive. For example, if we wish to determine whether nitrogen molecules are adsorbed onto an iron surface with the axis of the molecule perpendicular or parallel to the surface it would seem that the valence orbitals would be most affected. This is generally the case but, because ultraviolet photoelectron spectra of solids are considerably broadened, it is the X-ray photoelectron spectra that are usually the most informative. [Pg.313]

This E is characteristic for each energy level ia the element and can be used to determine the element from which the electron origiaated. Differences ia E form the basis of elemental sensitivity ia xps. [Pg.275]

The lines of primary interest ia an xps spectmm ate those reflecting photoelectrons from cote electron energy levels of the surface atoms. These ate labeled ia Figure 8 for the Ag 3, 3p, and 3t7 electrons. The sensitivity of xps toward certain elements, and hence the surface sensitivity attainable for these elements, is dependent upon intrinsic properties of the photoelectron lines observed. The parameter governing the relative iatensities of these cote level peaks is the photoionization cross-section, (. This parameter describes the relative efficiency of the photoionization process for each cote electron as a function of element atomic number. Obviously, the photoionization efficiency is not the same for electrons from the same cote level of all elements. This difference results ia variable surface sensitivity for elements even though the same cote level electrons may be monitored. [Pg.275]

Xps is a surface sensitive technique as opposed to a bulk technique because electrons caimot travel very far in soHds without undergoing energy loss. Thus, even though the incident x-rays penetrate the sample up to relatively large depths, the depth from which the electron information is obtained is limited by the "escape depth" of the photoemitted electrons. This surface sensitivity of xps is quantitatively defined by the inelastic mean free path parameter which is given the symbol X. This parameter is defined to be the distance an electron travels before engaging in an interaction in which it experiences an energy loss. [Pg.276]

In aes, the resolution is largely independent of the characteristics of the analy2er or source and is dictated by the natural linewidth of the Auger line (usually several eV). Therefore, in using a CMA for aes, the analyst is more concerned with transmission (and hence, sensitivity) than with resolution. In contrast to xps, the optimhation of variables is achieved for aes in the CRR mode of operation. The large transmission of the CMA relative to the CHA make it the more desirable analy2er for aes. [Pg.284]

Applications of ISS to polymer analysis can provide some extremely useful and unique information that cannot be obtained by other means. This makes it extremely complementary to use ISS with other techniques, such as XPS and static SIMS. Some particularly important applications include the analysis of oxidation or degradation of polymers, adhesive failures, delaminations, silicone contamination, discolorations, and contamination by both organic or inorganic materials within the very outer layers of a sample. XPS and static SIMS are extremely comple-mentar when used in these studies, although these contaminants often are undetected by XPS and too complex because of interferences in SIMS. The concentration, and especially the thickness, of these thin surfiice layers has been found to have profound affects on adhesion. Besides problems in adhesion, ISS has proven very useful in studies related to printing operations, which are extremely sensitive to surface chemistry in the very outer layers. [Pg.523]

In other articles in this section, a method of analysis is described called Secondary Ion Mass Spectrometry (SIMS), in which material is sputtered from a surface using an ion beam and the minor components that are ejected as positive or negative ions are analyzed by a mass spectrometer. Over the past few years, methods that post-ion-ize the major neutral components ejected from surfaces under ion-beam or laser bombardment have been introduced because of the improved quantitative aspects obtainable by analyzing the major ejected channel. These techniques include SALI, Sputter-Initiated Resonance Ionization Spectroscopy (SIRIS), and Sputtered Neutral Mass Spectrometry (SNMS) or electron-gas post-ionization. Post-ionization techniques for surface analysis have received widespread interest because of their increased sensitivity, compared to more traditional surface analysis techniques, such as X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), and their more reliable quantitation, compared to SIMS. [Pg.559]

SALI compares fiivorably with other major surface analytical techniques in terms of sensitivity and spatial resolution. Its major advantj e is the combination of analytical versatility, ease of quantification, and sensitivity. Table 1 compares the analytical characteristics of SALI to four major surfiice spectroscopic techniques.These techniques can also be categorized by the chemical information they provide. Both SALI and SIMS (static mode only) can provide molecular fingerprint information via mass spectra that give mass peaks corresponding to structural units of the molecule, while XPS provides only short-range chemical information. XPS and static SIMS are often used to complement each other since XPS chemical speciation information is semiquantitative however, SALI molecular information can potentially be quantified direedy without correlation with another surface spectroscopic technique. AES and Rutherford Backscattering (RBS) provide primarily elemental information, and therefore yield litde structural informadon. The common detection limit refers to the sensitivity for nearly all elements that these techniques enjoy. [Pg.560]


See other pages where XPS sensitivity is mentioned: [Pg.240]    [Pg.217]    [Pg.110]    [Pg.91]    [Pg.1]    [Pg.249]    [Pg.240]    [Pg.217]    [Pg.110]    [Pg.91]    [Pg.1]    [Pg.249]    [Pg.1812]    [Pg.1823]    [Pg.1854]    [Pg.277]    [Pg.283]    [Pg.284]    [Pg.356]    [Pg.451]    [Pg.197]    [Pg.280]    [Pg.280]    [Pg.282]    [Pg.283]    [Pg.291]    [Pg.296]    [Pg.297]    [Pg.298]    [Pg.301]    [Pg.306]    [Pg.307]    [Pg.307]    [Pg.308]    [Pg.308]    [Pg.311]    [Pg.326]    [Pg.456]    [Pg.475]    [Pg.515]    [Pg.522]    [Pg.561]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



Surface sensitivity of XPS

XPS

© 2024 chempedia.info