Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanics continuum

At Che opposite limit, where Che density Is high enough for mean free paths to be short con ared with pore diameters, the problem can be treated by continuum mechanics. In the simplest ease of a straight tube of circular cross-section, the fluid velocity field can easily be obtained by Integrating Che Nsvler-Stokes equations If an appropriate boundary condition at Che... [Pg.179]

Antontsev S.N., Hoffmann K.-H., Khludnev A.M. (Eds.) (1992) Eree boundary problems in continuum mechanics. Inter. Ser. Numer. Math., Birkhauser Verlag. [Pg.375]

Goldshtein R., Entov V. (1989) Qualitative methods in continuum mechanics. Nauka, Moscow (in Russian). [Pg.378]

Kinematical relations in large deformations are given here for reference. Most of the material is well known, and may be extracted or deduced from the comprehensive expositions of Truesdell and Toupin [19], Truesdell and Noll [20], or other texts in continuum mechanics, where further details may be found. [Pg.171]

The basic assumption of continuum mechanics is that the motion is smooth, i.e., differentiable as many times as needed, and that the Jacobian of the motion is nonzero and positive so that (A.l) is uniquely invertible in X... [Pg.171]

Most materials scientists at an early stage in their university courses learn some elementary aspects of what is still miscalled strength of materials . This field incorporates elementary treatments of problems such as the elastic response of beams to continuous or localised loading, the distribution of torque across a shaft under torsion, or the elastic stresses in the components of a simple girder. Materials come into it only insofar as the specific elastic properties of a particular metal or timber determine the numerical values for some of the symbols in the algebraic treatment. This kind of simple theory is an example of continuum mechanics, and its derivation does not require any knowledge of the crystal structure or crystal properties of simple materials or of the microstructure of more complex materials. The specific aim is to design simple structures that will not exceed their elastic limit under load. [Pg.47]

From strength of materials one can move two ways. On the one hand, mechanical and civil engineers and applied mathematicians shift towards more elaborate situations, such as plastic shakedown in elaborate roof trusses here some transient plastic deformation is planned for. Other problems involve very complex elastic situations. This kind of continuum mechanics is a huge field with a large literature of its own (an example is the celebrated book by Timoshenko 1934), and it has essentially nothing to do with materials science or engineering because it is not specific to any material or even family of materials. [Pg.47]

From this kind of continuum mechanics one can move further towards the domain of almost pure mathematics until one reaches the field of rational mechanics, which harks back to Joseph Lagrange s (1736-1813) mechanics of rigid bodies and to earlier mathematicians such as Leonhard Euler (1707-1783) and later ones such as Augustin Cauchy (1789-1857), who developed the mechanics of deformable bodies. The preeminent exponent of this kind of continuum mechanics was probably Clifford Truesdell in Baltimore. An example of his extensive writings is A First Course in... [Pg.47]

I cannot judge whether Truesdell s kind of continuum mechanics is of use to mechanical engineers who have to design structures to withstand specific demands, but the total absence of diagrams causes me to wonder. In any case, I understand (Walters 1998, Tanner and Walters 1998) that rational mechanics was effectively Truesdell s invention and is likely to end with him. The birth and death of would-be disciplines go on all the time. [Pg.48]

Truesdell, C.A. (1977, 1991) A First Course in Rational Continuum Mechanics (Academic Press, Boston). [Pg.54]

Vlaugin, G. A., The method of virtual power in continuum mechanics Application to coupicd fields. Acta Mechanica, 35 (1980), pp. 1-70. [Pg.1356]

The first equation gives the diserete version of Newton s equation the second equation gives energy c onservation. We make two comments (1) Notice that while energy eouseivation is a natural consequence of Newton s equation in continuum mechanics, it becomes an independent property of the system in Lee s discrete mechanics (2) If time is treated as a conventional parameter and not as a dynamical variable, the discretized system is not tiine-translationally invariant and energy is not conserved. Making both and t , dynamical variables is therefore one way to sidestep this problem. [Pg.656]

Effect of strain rate Workers in the field of continuum mechanics have had occasion to... [Pg.40]

It has been shown that the thermodynamic foundations of plasticity may be considered within the framework of the continuum mechanics of materials with memory. A nonlinear material with memory is defined by a system of constitutive equations in which some state functions such as the stress tension or the internal energy, the heat flux, etc., are determined as functionals of a function which represents the time history of the local configuration of a material particle. [Pg.645]

For those interested in advanced materials, more in-depth knowledge of statistical and continuum mechanics than that provided in transport and mechanics courses seems essential. [Pg.189]

In literature, some researchers regarded that the continuum mechanic ceases to be valid to describe the lubrication behavior when clearance decreases down to such a limit. Reasons cited for the inadequacy of continuum methods applied to the lubrication confined between two solid walls in relative motion are that the problem is so complex that any theoretical approach is doomed to failure, and that the film is so thin, being inherently of molecular scale, that modeling the material as a continuum ceases to be valid. Due to the molecular orientation, the lubricant has an underlying microstructure. They turned to molecular dynamic simulation for help, from which macroscopic flow equations are drawn. This is also validated through molecular dynamic simulation by Hu et al. [6,7] and Mark et al. [8]. To date, experimental research had "got a little too far forward on its skis however, theoretical approaches have not had such rosy prospects as the experimental ones have. Theoretical modeling of the lubrication features associated with TFL is then urgently necessary. [Pg.63]

As noted before, thin film lubrication (TFL) is a transition lubrication state between the elastohydrodynamic lubrication (EHL) and the boundary lubrication (BL). It is widely accepted that in addition to piezo-viscous effect and solid elastic deformation, EHL is featured with viscous fluid films and it is based upon a continuum mechanism. Boundary lubrication, however, featured with adsorption films, is either due to physisorption or chemisorption, and it is based on surface physical/chemical properties [14]. It will be of great importance to bridge the gap between EHL and BL regarding the work mechanism and study methods, by considering TFL as a specihc lubrication state. In TFL modeling, the microstructure of the fluids and the surface effects are two major factors to be taken into consideration. [Pg.64]

This section provides an alternative measurement for a material parameter the one in the ensemble averaged sense to pave the way for usage of continuum theory from a hope that useful engineering predictions can be made. More details can be found in Ref. [15]. In fact, macroscopic flow equations developed from molecular dynamics simulations agree well with the continuum mechanics prediction (for instance. Ref. [16]). [Pg.64]

From experimental results, the variation of film thickness with rolling velocity is continuous, which validates a continuum mechanism, to some extent in TFL. Because TFL is described as a state in which the film thickness is at the molecular scale of the lubricants, i.e., of nanometre size, common lubricants may exhibit microstructure in thin films. A possible way to use continuum theory is to consider the effect of a spinning molecular confined by the solid-liquid interface. The micropolar theory will account for this behavior. [Pg.67]

Leslie, F. M., "Theory of Flow in Nematic Liquid Crystals, The Breadth and Depth of Continuum Mechanics—A Collection of Papers Dedicated To J. L. Ericksen, C. M. Da-fermos, D. D. Joseph, andF. M. Leslie, Eds., Springer-Verlag, Berlin, 1986. [Pg.77]

Finally, it deserves to be mentioned that considerable numbers of models of static friction based on continuum mechanics and asperity contact were proposed in the literature. For instance, the friction at individual asperity was calculated, and the total force of friction was then obtained through a statistical sum-up [35]. In the majority of such models, however, the friction on individual asperity was estimated in terms of a phenomenal shear stress without involving the origin of friction. [Pg.184]

The large deformability as shown in Figure 21.2, one of the main features of rubber, can be discussed in the category of continuum mechanics, which itself is complete theoretical framework. However, in the textbooks on rubber, we have to explain this feature with molecular theory. This would be the statistical mechanics of network structure where we encounter another serious pitfall and this is what we are concerned with in this chapter the assumption of affine deformation. The assumption is the core idea that appeared both in Gaussian network that treats infinitesimal deformation and in Mooney-Rivlin equation that treats large deformation. The microscopic deformation of a single polymer chain must be proportional to the macroscopic rubber deformation. However, the assumption is merely hypothesis and there is no experimental support. In summary, the theory of rubbery materials is built like a two-storied house of cards, without any experimental evidence on a single polymer chain entropic elasticity and affine deformation. [Pg.581]

Mars, W.V. and Fatemi, A., The correlation of fatigue crack growth rates in rubber subjected to multiaxial loading using continuum mechanical parameters. Rubber Chem. TechnoL, 80, 169, 2007. [Pg.682]

It can be noted that other approaches, based on irreversible continuum mechanics, have also been used to study diffusion in polymers [61,224]. This work involves development of the species momentum and continuity equations for the polymer matrix as well as for the solvent and solute of interest. The major difficulty with this approach lies in the determination of the proper constitutive equations for the mixture. Electric-field-induced transport has not been considered within this context. [Pg.561]

Lodge AS (1974) Body tensor fields in continuum mechanics. Academic Press, New York... [Pg.43]


See other pages where Mechanics continuum is mentioned: [Pg.2746]    [Pg.727]    [Pg.286]    [Pg.248]    [Pg.633]    [Pg.217]    [Pg.19]    [Pg.47]    [Pg.48]    [Pg.48]    [Pg.49]    [Pg.50]    [Pg.359]    [Pg.361]    [Pg.202]    [Pg.1346]    [Pg.45]    [Pg.427]    [Pg.96]    [Pg.18]    [Pg.291]    [Pg.130]   
See also in sourсe #XX -- [ Pg.47 ]

See also in sourсe #XX -- [ Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 , Pg.23 ]

See also in sourсe #XX -- [ Pg.244 ]

See also in sourсe #XX -- [ Pg.298 ]

See also in sourсe #XX -- [ Pg.67 ]

See also in sourсe #XX -- [ Pg.68 , Pg.121 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.640 , Pg.675 , Pg.678 ]

See also in sourсe #XX -- [ Pg.124 ]

See also in sourсe #XX -- [ Pg.403 ]

See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.32 , Pg.33 , Pg.34 , Pg.35 , Pg.36 , Pg.83 , Pg.94 , Pg.130 , Pg.181 , Pg.349 , Pg.434 , Pg.458 ]

See also in sourсe #XX -- [ Pg.280 , Pg.281 , Pg.291 ]

See also in sourсe #XX -- [ Pg.76 ]

See also in sourсe #XX -- [ Pg.287 ]

See also in sourсe #XX -- [ Pg.299 ]

See also in sourсe #XX -- [ Pg.63 ]

See also in sourсe #XX -- [ Pg.5 , Pg.184 ]

See also in sourсe #XX -- [ Pg.52 ]

See also in sourсe #XX -- [ Pg.289 , Pg.290 , Pg.291 , Pg.292 , Pg.293 , Pg.294 ]

See also in sourсe #XX -- [ Pg.47 ]

See also in sourсe #XX -- [ Pg.238 ]




SEARCH



Constitutive equations continuum mechanical approach

Continuum Mechanics and Empirical Models of Rubber Elasticity

Continuum Mechanics as an 1 effective Theory

Continuum damage mechanics

Continuum mechanics approach

Continuum mechanics models

Continuum mechanics, applied

Continuum-mechanics-based models

Hybrid atomistic/continuum mechanics

Hybrid atomistic/continuum mechanics method

Interphase continuum mechanics

Introduction to Continuum Mechanics

Local Continuum Mechanical Population Balance Equation

Macroscopic Continuum Mechanical Population Balance

Mechanical strains continuum

Mechanical stresses continuum

Polymer Melt Constitutive Equations Based on Continuum Mechanics

Process continuum mechanics

Simulation continuum mechanics

Statistical, Continuum Mechanical, and Rate Process Theories of Fracture

The Continuum Mechanical Approach

The Microscopic Continuum Mechanical Population Balance Formulation

© 2024 chempedia.info