Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation times dielectric

S. Yoshioka, Y. Aso, T. Otsuka, and S. Kojima, Water mobility in polyethylene glycol-, polyvinylpyrrolidone)-, and gelatin-watersystems, as measured by spin-lattice relaxation time, dielectric relaxation time, and water activity, J. Pharm. Sci. 84, 1072-1077(1995). [Pg.245]

Dielectric Behavior of Adsorbed Water. Determination of the dielectric absorption of adsorbed water can yield conclusions similar to those from proton NMR studies and there is a considerable, although older literature on the subject. Figure XVI-7 illustrates how the dielectric constant for adsorbed water varies with the frequency used as well as with the degree of surface coverage. A characteristic relaxation time r can be estimated... [Pg.588]

The state of an adsorbate is often described as mobile or localized, usually in connection with adsorption models and analyses of adsorption entropies (see Section XVII-3C). A more direct criterion is, in analogy to that of the fluidity of a bulk phase, the degree of mobility as reflected by the surface diffusion coefficient. This may be estimated from the dielectric relaxation time Resing [115] gives values of the diffusion coefficient for adsorbed water ranging from near bulk liquids values (lO cm /sec) to as low as 10 cm /sec. [Pg.589]

This is no longer the case when (iii) motion along the reaction patir occurs on a time scale comparable to other relaxation times of the solute or the solvent, i.e. the system is partially non-relaxed. In this situation dynamic effects have to be taken into account explicitly, such as solvent-assisted intramolecular vibrational energy redistribution (IVR) in the solute, solvent-induced electronic surface hopping, dephasing, solute-solvent energy transfer, dynamic caging, rotational relaxation, or solvent dielectric and momentum relaxation. [Pg.831]

The time-temperature superpositioning principle was applied f to the maximum in dielectric loss factors measured on poly(vinyl acetate). Data collected at different temperatures were shifted to match at Tg = 28 C. The shift factors for the frequency (in hertz) at the maximum were found to obey the WLF equation in the following form log co + 6.9 = [ 19.6(T -28)]/[42 (T - 28)]. Estimate the fractional free volume at Tg and a. for the free volume from these data. Recalling from Chap. 3 that the loss factor for the mechanical properties occurs at cor = 1, estimate the relaxation time for poly(vinyl acetate) at 40 and 28.5 C. [Pg.269]

For many years the petroleum industry has defined nonconductive liquids as having conductivities less than 50 pS/m. A higher value of 100 pS/m is used here to address the higher dielectric constants of certain flammable chemicals in relation to petroleum products. For example the dielectric constant of ethyl ether is 4.6 versus 2.3 for benzene from Eq. (2-3.2), ethyl ether therefore has the same relaxation time at a conductivity of 100 pS/m as benzene at a conductivity of 50 pS/m. It is the relaxation time, not the conductivity alone, that determines the rate of loss of charge hence the same logic that makes 50 pS/m appropriate for identifying nonconductive hydrocarbons makes 100 pS/m appropriate for identifying nonconductive chemical products. [Pg.103]

Various theoretical and empirical models have been derived expressing either charge density or charging current in terms of flow characteristics such as pipe diameter d (m) and flow velocity v (m/s). Liquid dielectric and physical properties appear in more complex models. The application of theoretical models is often limited by the nonavailability or inaccuracy of parameters needed to solve the equations. Empirical models are adequate in most cases. For turbulent flow of nonconductive liquid through a given pipe under conditions where the residence time is long compared with the relaxation time, it is found that the volumetric charge density Qy attains a steady-state value which is directly proportional to flow velocity... [Pg.107]

K = 63 M 1, Kb = 1.4M-1)47 lithium-7 (K = 14 M 1 K" = 0.5 M 1) 49) and for cesium-133 (K, st 50 M-1, K = 4M 1)S0). In the case of sodium-23, transverse relaxation times could also be utilized to determine off-rate constants k ff = 3 x 105/sec k"ff = 2x 107/sec47,51). Therefore for sodium ion four of the five rate constants have been independently determined. What has not been obtained for sodium ion is the rate constant for the central barrier, kcb. By means of dielectric relaxation studies a rate constant considered to be for passage over the central barrier, i.e. for jumping between sites, has been determined for Tl+ to be approximately 4 x 106/sec 52). If we make the assumption that the binding process functions as a normalization of free energies, recognize that the contribution of the lipid to the central barrier is independent of the ion and note that the channel is quite uniform, then it is reasonable to utilize the value of 4x 106/sec for the sodium ion. [Pg.192]

Up to now it has been tacitly assumed that each molecular motion can be described by a single correlation time. On the other hand, it is well-known, e.g., from dielectric and mechanical relaxation studies as well as from photon correlation spectroscopy and NMR relaxation times that in polymers one often deals with a distribution of correlation times60 65), in particular in glassy systems. Although the phenomenon as such is well established, little is known about the nature of this distribution. In particular, most techniques employed in this area do not allow a distinction of a heterogeneous distribution, where spatially separed groups move with different time constants and a homogeneous distribution, where each monomer unit shows essentially the same non-exponential relaxation. Even worse, relaxation... [Pg.37]

From the various autocorrelation times which characterized macromolecular fluctuations, those associated with the fluctuation of the electrostatic field from the protein on its reacting fragments are probably the most important (see Ref. 8). These autocorrelation times define the dielectric relaxation times for different protein sites and can be used to estimate dynamical effects on biological reactions (see Chapter 9 for more details). [Pg.122]

Dielectric relaxation times, 122, 216 Diffusion, in proteins, simulated by MD, 120-122... [Pg.230]

Proteins, 109,110, 116.Seealso Enzymes Macromolecules average thermal amplitudes, MD simulations, 119 binding of ligands to, 120 dielectric relaxation time of, 122 electrostatic energies in, 122, 123-125 flexibility of, 209,221,226-227, 227 folding, 109,227... [Pg.234]

FIGURE 24.1 Local segmental relaxation times for pol3miethyltolylsiloxane (PMTS) measured dielectrically as a function of temperature at constant pressure (circles) and as a function of pressure at fixed temperature (triangles). (From Paluch, M., Pawlus, S., and Roland, C.M., Macromolecules, 35, 7338, 2002.)... [Pg.661]

FIGURE 24.10 Dielectric relaxation times from Figures 24.7 through 24.9 plotted versus 7V, with mode independent -y = 3.0 (1,4-polyisoprene), = 2.5 (polypropylene glycol), and = 2.65 (polyoxyhutylene). [Pg.669]

The addition of salts modifies the composition of the layer of charges at the micellar interface of ionic surfactants, reducing the static dielectric constant of the system [129,130]. Moreover, addition of an electrolyte (NaCl or CaCli) to water-containing AOT-reversed micelles leads to a marked decrease in the maximal solubihty of water, in the viscosity, and in the electrical birefringence relaxation time [131],... [Pg.485]

The dramatic slowing down of molecular motions is seen explicitly in a vast area of different probes of liquid local structures. Slow motion is evident in viscosity, dielectric relaxation, frequency-dependent ionic conductance, and in the speed of crystallization itself. In all cases, the temperature dependence of the generic relaxation time obeys to a reasonable, but not perfect, approximation the empirical Vogel-Fulcher law ... [Pg.104]

Time Constant Analysis, r is the relaxation time of the corrosion process and is dependent on the dielectric properties of the interface. r is given by r = R P, but can be measured independently r = wz"max Since and P vary with surface area in exactly opposite fashion, r (or wzBmax) should be independent of surface area. To verify that this is indeed the case, we examined the corrosion of N80 steel in uninhibited 15% HC1 at 65 C. With increasing exposure time, we observed a continuous decrease in R (hence an increase in corrosion rate) and a concomitant increase in P. And, as expected, wz"max did not vary at all (see Figure 8). [Pg.646]

It takes 10-u s, the normal dielectric relaxation time for water, to form the hydrated electron, and -10-9 s for the electron to disappear by reacting with the water molecule (the former is an overestimate, the latter an underestimate). [Pg.146]

Notwithstanding Platzman s theory, most calculations of radiation-chemical yields in water and aqueous solutions were performed using the free-radical model (see Magee, 1953 Samuel and Magee, 1953 Ganguly and Magee, 1956). The hypothesis was that the recapture time of the electron would be shorter than the dielectric relaxation time. Therefore, recombination would outcompete solvation. [Pg.146]


See other pages where Relaxation times dielectric is mentioned: [Pg.4]    [Pg.43]    [Pg.862]    [Pg.866]    [Pg.4]    [Pg.43]    [Pg.862]    [Pg.866]    [Pg.589]    [Pg.857]    [Pg.858]    [Pg.152]    [Pg.13]    [Pg.100]    [Pg.102]    [Pg.111]    [Pg.181]    [Pg.388]    [Pg.216]    [Pg.235]    [Pg.2]    [Pg.59]    [Pg.657]    [Pg.658]    [Pg.660]    [Pg.494]    [Pg.165]    [Pg.91]    [Pg.725]    [Pg.482]    [Pg.824]    [Pg.9]    [Pg.111]    [Pg.157]   
See also in sourсe #XX -- [ Pg.669 ]

See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.197 ]

See also in sourсe #XX -- [ Pg.149 , Pg.211 , Pg.217 , Pg.219 , Pg.224 ]

See also in sourсe #XX -- [ Pg.275 , Pg.285 , Pg.286 , Pg.287 ]




SEARCH



Dielectr relaxation time

Dielectric relaxation

© 2024 chempedia.info