Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

With Acetic Acid

SOURCE Huls America, Inc. Basic Formulations of Detergents and Cleaning Agents for Household Purposes [Pg.46]

Burcosperse AP Liquid Sodium Xylene Sulfonates 40% Sodium Citrate [Pg.47]

Add components in the order listed. Blend until uniform between each addition. [Pg.47]

This is a use as is formulation for heavy duty cleaning. For lighter duty applications, dilution with water may be possible. This formulation will suspend oil to assist with removal. The suspended oil will then float for easy ramoval. [Pg.47]


Lead tetracetate. Red lead is warmed with acetic acid in the presence of sufficient acetic anhydride to combine with the water formed ... [Pg.199]

By the action of keten, CHjCO, upon acida with acetic acid ... [Pg.371]

Bromination of fatty acids in the a-position can be effected quite readily in the presence of phosphorus trichloride, red phosphorus or pyridine as catalysts or halogen carriers with acetic acid, the addition of acetic anhydride (to ensure the absence of water) improves the yield and facilitates the bromination. Examples are —... [Pg.427]

Saccharic acid. Use the filtrate A) from the above oxidation of lactose or, alternatively, employ the product obtained by evaporating 10 g. of glucose with 100 ml. of nitric acid, sp. gr. 1 15, until a syrupy residue remains and then dissolving in 30 ml. of water. Exactly neutralise at the boiling point with a concentrated solution of potassium carbonate, acidify with acetic acid, and concentrate again to a thick syrup. Upon the addition of 50 per cent, acetic acid, acid potassium saccharate sepa rates out. Filter at the pump and recrystaUise from a small quantity of hot water to remove the attendant oxahc acid. It is necessary to isolate the saccharic acid as the acid potassium salt since the acid is very soluble in water. The purity may be confirmed by conversion into the silver salt (Section 111,103) and determination of the silver content by ignition. [Pg.453]

Method 1. Dissolve 25 0 g. of salicylaldehyde (Section IV,122) in 215 ml. of 2N sodium hydroxide solution, add 12 05 g. of hydroxylamine hydrochloride, and warm the mixture for 30 minutes on a water bath. Acidify with acetic acid and cool in ice the salicylaldoxime separates as a congealed oil. Recrystalhae from chloroform - light petroleum (b.p. 40-60°). The yield of salicylaldoxime (colourless crystals, m.p. 57°) is 5 g. [Pg.958]

Although no chemical reaction occurs, measurements of the freezing point and infra-red spectra show that nitric acid forms i i molecular complexes with acetic acid , ether and dioxan. In contrast, the infrared spectrum of nitric acid in chloroform and carbon tetrachloride - is very similar to that of nitric acid vapour, showing that in these cases a close association with the solvent does not occur. [Pg.32]

The selection of solvents for quantitative work is not easy. Nitro-alkanes are sufficiently inert, but nitronium tetrafluoroborate is poorly soluble in them c. 0-3 %). Nitronium salts react rapidly with acetic anhydride, and less rapidly with acetic acid, A, A -dimethylformamide and acetonitrile, although the latter solvent can be used for nitration at low temperatures. Sulpholan was selected as the most suitable solvent ... [Pg.61]

METHOD 2 [89]--1M MDA or benzedrine and 1M benzaldehyde is dissolved in 95% ethanol (Everclear), stirred, the solvent removed by distillation then the oil vacuum distilled to give 95% yellow oil which is a Schiff base intermediate. 1M of this intermediate, plus 1M iodomethane, is sealed in a pipe bomb that s dumped in boiling water for 5 hours giving an orangy-red heavy oil. The oil is taken up in methanol, 1/8 its volume of dH20 is added and the solution refluxed for 30 minutes. Next, an equal volume of water is added and the whole solution boiled openly until no more odor of benzaldehyde is detected (smells like almond extract). The solution is acidified with acetic acid, washed with ether (discard ether), the MDMA or meth freebase liberated with NaOH and extracted with ether to afford a yield of 90% for meth and 65% for MDMA. That s not a bad conversion but what s with having to use benzaldehyde (a List chemical) Strike wonders if another aldehyde can substitute. [Pg.159]

Diborane or aUcylboranes are used for reduaion of alkenes and alkynes via hydrobora-tion (see pp. 37f., 47f., 130f.) followed by hydrolysis of the borane with acetic acid (H.C. Brown, 1975). [Pg.96]

The preparation of ethyl cyanoacetate proceeds via ethyl chloroacetate and begins with acetic acid Wnte a sequence of reactions descnbmg this synthesis... [Pg.912]

Glyoxylic acid solution (protein detection) cover 10 g of magnesium powder with water and slowly add 250 mL of a saturated oxalic solution, keeping the mixture cool filter off the magnesium oxalate, acidify the filtrate with acetic acid and make up to a liter with water. [Pg.1191]

Acetone cracks to ketene, and may then be converted to anhydride by reaction with acetic acid. This process consumes somewhat less energy and is a popular subject for chemical engineering problems (24,25). The cost of acetone works against widespread appHcation of this process, however. [Pg.76]

Ketene can be obtained by reaction of carbon oxides with ethylene (53). Because ketene combines readily with acetic acid, forming anhydride, this route may have practical appHcations. Litde is known about the engineering possibiHties of these reactions. [Pg.78]

The important chemical properties of acetyl chloride, CH COCl, were described ia the 1850s (10). Acetyl chloride was prepared by distilling a mixture of anhydrous sodium acetate [127-09-3J, C2H202Na, and phosphorous oxychloride [10025-87-3] POCl, and used it to interact with acetic acid yielding acetic anhydride. Acetyl chloride s violent reaction with water has been used to model Hquid-phase reactions. [Pg.81]

The product of this reaction can be removed as an azeotrope (84.1% amide, 15.9% acetic acid) which boils at 170.8—170.9°C. Acid present in the azeotrope can be removed by the addition of soHd caustic soda [1310-73-2] followed by distillation (2). The reaction can also take place in a solution having a DMAC-acetic acid ratio higher than the azeotropic composition, so that an azeotrope does not form. For this purpose, dimethylamine is added in excess of the stoichiometric proportion (3). If a substantial excess of dimethylamine reacts with acetic acid under conditions of elevated temperature and pressure, a reduced amount of azeotrope is formed. Optimum temperatures are between 250—325°C, and pressures in excess of 6200 kPa (900 psi) are requited (4). DMAC can also be made by the reaction of acetic anhydride [108-24-7] and dimethylamine ... [Pg.84]

Although the rapid cost increases and shortages of petroleum-based feedstocks forecast a decade ago have yet to materialize, shift to natural gas or coal may become necessary in the new century. Under such conditions, it is possible that acrylate manufacture via acetylene, as described above, could again become attractive. It appears that condensation of formaldehyde with acetic acid might be preferred. A coal gasification complex readily provides all of the necessary intermediates for manufacture of acrylates (92). [Pg.156]

Raw Material. PVA is synthesized from acetjiene [74-86-2] or ethylene [74-85-1] by reaction with acetic acid (and oxygen in the case of ethylene), in the presence of a catalyst such as zinc acetate, to form vinyl acetate [108-05-4] which is then polymerized in methanol. The polymer obtained is subjected to methanolysis with sodium hydroxide, whereby PVA precipitates from the methanol solution. [Pg.337]

The anhydride of formic acid has not been isolated, but mixed anhydrides are known, and, with acetic acid, the latter have utifity as formylating agents (22). The only known formyl haUde is the fluoride, which has a boiling poiat of —29° C. [Pg.504]

Formic acid is currently produced iadustriaHy by three main processes (/) acidolysis of formate salts, which are ia turn by-products of other processes (2) as a coproduct with acetic acid ia the Hquid-phase oxidation of hydrocarbons or (3) carbonylation of methanol to methyl formate, followed either by direct hydrolysis of the ester or by the iatermediacy of formamide. [Pg.504]

Acetins. The acetins are the mono-, di-, and triacetates of glycerol that form when glycerol is heated with acetic acid. Physical properties are shown in Table 4 they are all colorless. [Pg.350]

Hafnium Acetate. Hafnium acetate [15978-87-7], Hf(OH)2(CH2COO)2, solutions are prepared by reacting the basic carbonate or freshly precipitated hydroxide with acetic acid. The acetate solution has been of interest in preparing oxide films free of chloride or sulfate anions. [Pg.445]

Polymers. Hydrocarbons from petroleum and natural gas serve as the raw material for virtually all polymeric materials commonly found in commerce, with the notable exception of rayon which is derived from cellulose extracted from wood pulp. Even with rayon, however, the cellulose is treated with acetic acid (qv), much of which is manufactured from ethylene (see Fibers, regenerated cellulosics). [Pg.369]

Hydrolysis of Peroxycarboxylic Systems. Peroxyacetic acid [79-21-0] is produced commercially by the controlled autoxidation of acetaldehyde (qv). Under hydrolytic conditions, it forms an equiHbrium mixture with acetic acid and hydrogen peroxide. The hydrogen peroxide can be recovered from the mixture by extractive distillation (89) or by precipitating as the calcium salt followed by carbonating with carbon dioxide. These methods are not practiced on a commercial scale. Alternatively, the peroxycarboxyHc acid and alcohols can be treated with an estetifying catalyst to form H2O2 and the corresponding ester (90,91) (see Peroxides and peroxy compounds). [Pg.477]

Iron(III) acetate [1834-30-6], Ee(C2H202)3, is prepared industrially by treatment of scrap iron with acetic acid followed by air oxidation. Iron(III) acetate is used as a catalyst in organic oxidation reactions, as a mordant, and as a starting material for the preparation of other iron-containing compounds. [Pg.433]

For the two most important industrial uses, the gaseous ketene is immediately treated with acetic acid to form acetic anhydride or dimerized to diketene. [Pg.475]

Acidolysis, Aminolysis, and Alcoholysis. When heated, polyamides react with monofunctional acids, amines, or alcohols, especially above the melt temperature, to undergo rapid loss of molecular weight (58,59), eg, as in acidolysis (eq. 3) with acetic acid [64-19-7] or aminolysis (eq. 4) with an ahphatic amine ... [Pg.224]

Amine salts, especially acetate salts prepared by neutralization of a fatty amine with acetic acid, are useflil as flotation agents (collectors), corrosion inhibitors, and lubricants (3,8). Amine acetates are commercially available from a number of suppHers Akzo Chemicals Inc. (Armac) (73) Henkel Corporation (formerly General Mills) (Alamac) (74) Jetco Chemicals Inc. (The Procter Gamble Company) (fet Amine) (75) Sherex (Adogen) (76) and Tom ah Products (Exxon Chemical Company) (Tomah) (77). [Pg.223]

Production is by the acetylation of 4-aminophenol. This can be achieved with acetic acid and acetic anhydride at 80°C (191), with acetic acid anhydride in pyridine at 100°C (192), with acetyl chloride and pyridine in toluene at 60°C (193), or by the action of ketene in alcohoHc suspension. 4-Hydroxyacetanihde also may be synthesized directiy from 4-nitrophenol The available reduction—acetylation systems include tin with acetic acid, hydrogenation over Pd—C in acetic anhydride, and hydrogenation over platinum in acetic acid (194,195). Other routes include rearrangement of 4-hydroxyacetophenone hydrazone with sodium nitrite in sulfuric acid and the electrolytic hydroxylation of acetanilide [103-84-4] (196). [Pg.316]

Esterification. Extensive commercial use is made of primary amyl acetate, a mixture of 1-pentyl acetate [28-63-7] and 2-metliylbutyl acetate [53496-15-4]. Esterifications with acetic acid are generally conducted in the Hquid phase in the presence of a strong acid catalyst such as sulfuric acid (34). Increased reaction rates are reported when esterifications are carried out in the presence of heteropoly acids supported on macroreticular cation-exchange resins (35) and 2eohte (36) catalysts in a heterogeneous process. Judging from the many patents issued in recent years, there appears to be considerable effort underway to find an appropriate soHd catalyst for a reactive distillation esterification process to avoid the product removal difficulties of the conventional process. [Pg.373]

AUyl acetate can be obtained by the vapoi-phase reaction of propylene and acetic acid over a supported Pd catalyst (eq. 20) (110). Reaction of acrylic acid and propylene yields isopropyl acrylate (eq. 21), and catalytic reaction with acetic acid produces isopropyl acetate (eq. 22) (110). [Pg.130]


See other pages where With Acetic Acid is mentioned: [Pg.35]    [Pg.172]    [Pg.117]    [Pg.295]    [Pg.588]    [Pg.668]    [Pg.865]    [Pg.941]    [Pg.1042]    [Pg.208]    [Pg.1202]    [Pg.65]    [Pg.65]    [Pg.77]    [Pg.344]    [Pg.71]    [Pg.294]    [Pg.293]   


SEARCH



© 2019 chempedia.info