Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteropoly acids supported

Esterification. Extensive commercial use is made of primary amyl acetate, a mixture of 1-pentyl acetate [28-63-7] and 2-metliylbutyl acetate [53496-15-4]. Esterifications with acetic acid are generally conducted in the Hquid phase in the presence of a strong acid catalyst such as sulfuric acid (34). Increased reaction rates are reported when esterifications are carried out in the presence of heteropoly acids supported on macroreticular cation-exchange resins (35) and 2eohte (36) catalysts in a heterogeneous process. Judging from the many patents issued in recent years, there appears to be considerable effort underway to find an appropriate soHd catalyst for a reactive distillation esterification process to avoid the product removal difficulties of the conventional process. [Pg.373]

New acid catalyst comprising Keggin-type heteropoly acid supported on mesoporous silica for dehydration of acetic acid... [Pg.785]

The first attempt to synthesize and characterize Kegj -type heteropoly acid supported on various mesoporous silicas and its application to add catalysis in the formation of acetic anhydride via dehydration of acetic acid were described in this study. A variety of characterization techniques such as Na adsorption, TEM and XRD were applied... [Pg.785]

The selectivity for acetic anhydride in the catalytic dehydration of acetic acid could be controlled by the pore size of pure mesoporous silica SBA-15. New acid catalyst comprising Keggin-type heteropoly acid supported on SBA-15 enhanced the activity etfectively when tungstophosphoric acid was highly dispersed on the silica substrate. [Pg.788]

A series of anchored Wilkinson s catalysts were prepared by reacting the homogeneous Wilkinson catalyst with several alumina/heteropoly acid support materials. These catalysts were used to promote the hydrogenation of 1-hexene. The results were compared with those obtained using the homogeneous Wilkinson and a l%Rh/Al203 catalyst with respect to catalyst activity and stabihty as well as the reaction selectivity as measured by the amount of double bond isomerization observed. The effect which the nature of the heteropoly acid exerted on the reaction was also examined. [Pg.175]

Davassy, B., Shanbhag, G., Lefebvre, F., and Halligudi, S. (2004) Alkylation of p-cresol with tert-butanol catalyzed by heteropoly acid supported on zirconia catalyst. J. Mol. Catal. A Chem., 210, 125-130. [Pg.247]

Studies with sulfated zirconia also show similar fast catalyst deactivation in the alkylation of isobutane with butenes. It was found, however, that original activities were easily restored by thermal treatment under air without the loss of selectivity to trimethylpentanes. Promoting metals such as Fe, Mn, and Pt did not have a marked effect on the reaction.362,363 Heteropoly acids supported on various oxides have the same characteristics as sulfated zirconia.364 Wells-Dawson heteropoly acids supported on silica show high selectivity for the formation of trimethylpentanes and can be regenerated with 03 at low temperature (125°C).365... [Pg.262]

Selective oxidation catalysis over heteropoly acid supported on polymer... [Pg.1183]

Engin, A., Haluk, H., Gurkan, K., 2003. Production of lactic acid esters catalyzed by heteropoly acid supported over ion-exchange resins. Green Chemistry 5,460--466. [Pg.276]

Clay-supported heteropoly acids such as H3PW12O40 are more active and selective heterogeneous catalysts for the synthesis of MTBE from methanol and tert-butanol, etherification of phenethyl alcohols with alkanols, and alkylation of hydroquinone with MTBE and tert-butanoi (Yadav and Kirthivasan, 1995 Yadav and Bokade, 1996 Yadav and Doshi, 2000), and synthesis of bisphenol-A (Yadav and Kirthivasan, 1997). [Pg.138]

Ethyl acetate is an oxygenated solvent widely used in the inks, pharmaceuticals and fragrance sectors. The current global capacity for ethyl acetate is 1.2 million tonnes per annum. BP Chemicals is the world s largest producer of ethyl acetate. Conventional methods for the production of ethyl acetate are either via the liquid phase esterification of acetic acid and ethanol or by the coupling of acetaldehyde also known as the Tischenko reaction. Both of these processes require environmentally unfriendly catalysts (e.g. p-toluenesulphonic acid for the esterification and metal chlorides and strong bases for the Tischenko route). In 1997 BP Chemicals disclosed a new route to produce ethyl acetate directly from the reaction of ethylene with acetic acid using supported heteropoly acids... [Pg.251]

The standard method used to prepare these AHC s was by anchoring a preformed complex onto an alumina support which had been treated with a heteropoly acid such as phosphotungstic acid (PTA). Alternately, the AHC can be prepared by treating an anchored Rh(COD)2 precursor with an appropriate ligand (8). We report here the use of AHC s which have been prepared by this... [Pg.513]

Y. Izumi, R. Hasebe, and K. Urabe, Catalysis by heterogeneous supported heteropoly acid, J. Catal., 84 (1983) 402 -09. [Pg.94]

Cesium salts of 12-tungstophosphoric acid have been compared to the pure acid and to a sulfated zirconia sample for isobutane/1-butene alkylation at room temperature. The salt was found to be much more active than either the acid or sulfated zirconia (201). Heteropolyacids have also been supported on sulfated zirconia catalysts. The combination was found to be superior to heteropolyacid supported on pure zirconia and on zirconia and other supports that had been treated with a variety of mineral acids (202). Solutions of heteropolyacids (containing phosphorus or silicon) in acetic acid were tested as alkylation catalysts at 323 K by Zhao et al. (203). The system was sensitive to the heteropoly acid/acetic acid ratio and the amount of crystalline water. As observed in the alkylation with conventional liquid acids, a polymer was formed, which enhanced the catalytic activity. [Pg.291]

Heteropoly acids such as H3PW12O40 (PW) are good catalysts for the hydration of limonene and other monoterpenes. PWs can be used as homogeneous catalysts in solution or supported on, for example, silica or MCM-41 materials. In aqueous acetic acid limonene gives, in the presence of PW, mainly a-terpineol (7) and a-terpinyl acetate (8) [17]. [Pg.106]

In this paper we report the use of supported heteropoly acid (silicotungstic acid) and supported phosphoric acid catalysts for the acylation of industrially relevant aromatic feedstocks with acid anhydrides in the synthesis of aromatic ketones. In particular, we describe the acylation of thioanisole 1 with iso-butyric anhydride 2 to form 4-methyl thiobutyrophenone 3. The acylation of thioanisole with acetic anhydride has been reported in which a series of zeolites were used as catalysts. Zeolite H-beta was reported to have the highest activity of the zeolites studied (41 mol % conversion, 150°C) (2). [Pg.347]

There has been an enormous technological interest in tertfa/j-butanol (tBA) dehydration during the past thirty years, first as a primary route to methyl te/f-butyl ether (MTBE) (1) and more recently for the production of isooctane and polyisobutylene (2). A number of commercializable processes have been developed for isobutylene manufacture (eq 1) in both the USA and Japan (3,4). These processes typically involve either vapor-phase tBA dehydration over a silica-alumina catalyst at 260-370°C, or liquid-phase processing utilizing either homogenous (sulfonic acid), or solid acid catalysis (e.g. acidic cationic resins). More recently, tBA dehydration has been examined using silica-supported heteropoly acids (5), montmorillonite clays (6), titanosilicates (7), as well as the use of compressed liquid water (8). [Pg.469]

Supported Heteropoly Acid Catalysts for Friedel-Crafts Acylation 347... [Pg.538]

Heterogeneous catalysts that exhibit good characteristics are silica-supported mixed Mo-V heteropoly acids and their Pd salts,1317 Pd on titania,1318 supported H3PMO12O40, and heteropoly acids and salts with Pd(OAc)21320 or PdCl2.1321... [Pg.527]


See other pages where Heteropoly acids supported is mentioned: [Pg.188]    [Pg.285]    [Pg.113]    [Pg.86]    [Pg.101]    [Pg.188]    [Pg.285]    [Pg.113]    [Pg.86]    [Pg.101]    [Pg.353]    [Pg.785]    [Pg.51]    [Pg.175]    [Pg.177]    [Pg.182]    [Pg.60]    [Pg.65]    [Pg.65]    [Pg.251]    [Pg.252]    [Pg.146]    [Pg.68]    [Pg.71]    [Pg.61]    [Pg.1429]    [Pg.1429]    [Pg.123]    [Pg.261]    [Pg.272]    [Pg.197]    [Pg.26]    [Pg.347]    [Pg.348]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Acidic supports

Heteropoly acids

Silica-Gel Supported Heteropoly Acid

Supported acids

© 2024 chempedia.info