Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Weathering runoff

In addition to runoff, rivers transport products of upland weathering to the oceans, forming a key link in the tectonic cycle of uplift and erosion. This interaction will be explored further in Section 6.6. [Pg.119]

Transport in water is an important mechanism for transfer of biogeochemical elements between the atmosphere, land, and oceans. In particular, rain is the primary means of removal from the atmosphere for many substances, and rivers (and to some extent groundwater) convey weathering products and runoff from the land surface to the oceans. [Pg.127]

Fig. 9-8 Histogram of dissolved solids of samples from the Orinoco and Amazon River basins and corresponding denudation rates for morpho-tectonic regions in the humid tropics of South America (Stal-lard, 1985). The approximate denudation scale is calculated as the product of dissolved solids concentrations, mean armual runoff (1 m/yr), and a correction factor to account for large ratios of suspended load in rivers that drain mountain belts and for the greater than average annual precipitation in the lowlands close to the equator. The correction factor was treated as a linear function of dissolved solids and ranged from 2 for the most dilute rivers (dissolved solids less than lOmg/L) to 4 for the most concentrated rivers (dissolved solids more than 1000 mg/L). Bedrock density is assumed to be 2.65 g/cm. (Reproduced with permission from R. F. Stallard (1988). Weathering and erosion in the humid tropics. In A. Lerman and M. Meybeck, Physical and Chemical Weathering in Geochemical Cycles," pp. 225-246, Kluwer Academic Publishers, Dordrecht, The Netherlands.)... Fig. 9-8 Histogram of dissolved solids of samples from the Orinoco and Amazon River basins and corresponding denudation rates for morpho-tectonic regions in the humid tropics of South America (Stal-lard, 1985). The approximate denudation scale is calculated as the product of dissolved solids concentrations, mean armual runoff (1 m/yr), and a correction factor to account for large ratios of suspended load in rivers that drain mountain belts and for the greater than average annual precipitation in the lowlands close to the equator. The correction factor was treated as a linear function of dissolved solids and ranged from 2 for the most dilute rivers (dissolved solids less than lOmg/L) to 4 for the most concentrated rivers (dissolved solids more than 1000 mg/L). Bedrock density is assumed to be 2.65 g/cm. (Reproduced with permission from R. F. Stallard (1988). Weathering and erosion in the humid tropics. In A. Lerman and M. Meybeck, Physical and Chemical Weathering in Geochemical Cycles," pp. 225-246, Kluwer Academic Publishers, Dordrecht, The Netherlands.)...
Weniger BG, Blaser MI, Gedrose J et al (1983) An outbreak of waterborne giardiasis associated with heavy water runoff due to warm weather and volcanic ashfall. Am J Public Health 73 862-872... [Pg.158]

Significant levels of herbicides have also been detected in rivers, although these are usually transitory. Heavy rainfall can move herbicides from agricultural land to nearby ditches and streams due to runoff, and in soils that are high in clay, percolation of water occurs through deep fissures with consequent movement into neighboring water courses. Such events under extreme weather conditions are likely to have contributed to the pulses of herbicide contamination observed in some rivers. Questions have been asked about possible effects of such episodic pollution on populations of aquatic plants. [Pg.263]

Field studies have shown that the first 5-6 mm of rain falling on a heated desert surface evaporate almost immediately, whilst single storms with more than 20 mm rain lose a major part of it by lateral runoff. Hence, it is estimated that from the already low rainfall in the arid zone an important part is lost for weathering and soil formation. The importance of this runoff... [Pg.23]

Wet-weather processes have, in general, been excluded in the text, because they are based on a different concept and perform differently. Microbial and physicochemical processes are contrary to the physical processes dominating in sewers during dry-weather transport of the wastewater. When dealing with combined sewer networks in terms of pollutant loads during overflow events, dry-weather solids deposition and erosion and solids transport during high-flow events are, in addition to the rainfall/runoff hydraulic and sewer solids characteristics, the central physical in-sewer processes. Quite different process approaches are, therefore, required to describe dry-weather and wet-weather sewer performance. [Pg.223]

PROFILE is a biogeochemical model developed specially to calculate the influence of acid depositions on soil as a part of an ecosystem. The sets of chemical and biogeochemical reactions implemented in this model are (1) soil solution equilibrium, (2) mineral weathering, (3) nitrification and (4) nutrient uptake. Other biogeochemical processes affect soil chemistry via boundary conditions. However, there are many important physical soil processes and site conditions such as convective transport of solutes through the soil profile, the almost total absence of radial water flux (down through the soil profile) in mountain soils, the absence of radial runoff from the profile in soils with permafrost, etc., which are not implemented in the model and have to be taken into account in other ways. [Pg.51]

Soil-related data (HM and BC content in soil parent materials) were included in calculations to account the values of HM weathering. Also we considered the influence of soil types on forest biomass productivity. Runoff data (at scale 0.5 x 0.50 were directly used to get input data on drainage water fluxes, Qie. Forest-type-related data (wood biomass growth and HM content in wood biomass) inserted into our database were subdivided depending on either coniferous, deciduous or mixed forests. [Pg.86]

The systematic removal of elements by runoff and the reimmobilization from solution by organic matter are continuously counterbalanced by the new input of chemical species, which maintain both biological and biogeochemical cycles. The main sources of water-soluble elements are oceanic aerosols deposited on the land surface and the weathering of rocks. The airborne input of the trace metals may be ranked as follows for the Spitzbergen island ecosystems (Table 4). [Pg.132]

Continental crust is assumed to be made of calcium silicate. High C02 pressure increases weathering and Ca2+ in the runoff according to the fictitious reaction... [Pg.394]

Another source of chlordecone release to water may result from the application of mirex containing chlordecone as a contaminant and by the degradation of mirex which was used extensively in several southern states. Carlson et al. (1976) reported that dechlorinated products including chlordecone were formed when mirex bait, or mirex deposited on soil after leaching from the bait, was exposed to sunlight, other forms of weathering, and microbial degradation over a period of 12 years. Chlordecone residues in the soil could find their way to surface waters via runoff. [Pg.179]

According to Table 5.3, in the drainage area of Lake Cristallina, about 4 pmol of plagioclase, 2 pmole of epidote, 1 pmole of biotite, and 1 pmol of K-feldspar per liter of runoff water are weathered per year. This amounts to 19 meq of cations per m2-year. [Pg.198]

Trace elements are discharged into the ocean in particulate and dissolved form as a component of river runoff and groundwater seeps. They are introduced into these waters during the chemical and mechanical weathering of crustal rocks. Thus, the chemical composition of river water is dependent on the composition of the rocks in the... [Pg.261]

Weathered fragments of continental crust comprise the bulk of marine sediments. These particles are primarily detrital silicates, with clay minerals being the most abmidant mineral type. Clay minerals are transported into the ocean by river runoff, winds, and ice rafting. Some are authigenic, being produced on and in the seafloor as a consequence of volcanic activity, diagenesis and metagenesis. [Pg.351]

Direct evidence supporting the occurrence of reverse weathering has proven difficult to obtain for two reasons. First, the same kinds of clay minerals produced by this process are also transported to the ocean as part of the suspended load in river runoff. Second, the rate of reverse weathering is so slow that laboratory studies of this process are difficult to conduct. [Pg.363]

On the early Earth, ions were mobilized from volcanic rocks by chemical weathering. Rivers and hydrothermal emissions transported these chemicals into the ocean, making seawater salty. These salts are now recycled within the crustal-ocean-atmosphere fectory via incorporation into sediments followed by deep burial, metamorphosis into sedimentary rock, uplift, and weathering. The last process remobilizes the salts, enabling their redelivery to the ocean via river runoff and aeolian transport. In the case of sodium and chlorine, evaporites are the single most important sedimentary sink. This sedimentary rock is also a significant sink for magnesium, sulfate, potassium, and calcium. [Pg.423]

Biogeochemists are working to construct numerical models that include all of these interlinked feedbacks to explain how the chemistry of seawater has changed over time in response to various forces, including tectonism, biological activity, ocean-atmosphere interactions, crustal weathering, and river runoff To incorporate all of these linkages into a numerical multielemental model of seawater is very complex because most of... [Pg.501]

One of the most notable features of seawater is its high degree of saltiness. In previous chapters, we have discussed various sources of this salt, these being rivers, volcanic gases, and hydrothermal fluids. These elements have ended up in one of four places (1) as dissolved ions in seawater, (2) as sedimentary minerals, (3) as hydrothermal minerals, and (4) as volatiles that reside in the atmosphere. The minerals are recycled via geologic uplift and subduction. Upon return to Earth s surface, these minerals are chemically weathered via acid attack by the atmospheric volatiles remobilizing the salts for return to the ocean in river runoff. [Pg.525]

The sedimentary and metamorphic rocks uplifted onto land have become part of continents or oceanic islands. These rocks are now subject to chemical weathering. The dissolved and particulate weathering products are transported back to the ocean by river runoff. Once in the ocean, the weathering products are available for removal back into a marine sedimentary reservoir. At present, most mass flows on this planet involve transport of the secondary (recycled) materials rather than the chemical reworking of the primary (juvenile) minerals and gases. The natirre of these transport and sediment formation processes has been covered in Chapters 14 through 19 from the perspective of the secondary minerals formed. We now reconsider these processes from the perspective of impacts on elemental segregation between the reservoirs of the crustal-ocean-atmosphere factory and the mantle. [Pg.527]

The overall effect of the terrestrial weathering reactions has been the addition of the major ions, DSi, and alkalinity to river water and the removal of O2, and CO2 from the atmosphere. Because the major ions are present in high concentrations in crustal rocks and are relatively soluble, they have become the most abimdant solutes in seawater. Mass-wise, the annual flux of solids from river runoff (1.55 x 10 g/y) in the pre-Anthropocene was about three times greater than that of the solutes (0.42 x 10 g/y). The aeolian dust flux (0.045 X 10 g/y) to the ocean is about 30 times less than the river solids input. Although most of the riverine solids are deposited on the continental margin, their input has a significant impact on seawater chemistry because most of these particles are clay minerals that have cations adsorbed to their surfaces. Some of these cations are desorbed... [Pg.529]

The products of chemical weathering, Ca, H4Si04, and 2HCOj, are transported by river runoff into the ocean, where they are then available to be returned to biogenic form by marine plankton. (Marine plankton have an enzyme, carbonic anhydrase, that converts bicarbonate to CO2.)... [Pg.713]


See other pages where Weathering runoff is mentioned: [Pg.390]    [Pg.50]    [Pg.86]    [Pg.390]    [Pg.50]    [Pg.86]    [Pg.177]    [Pg.178]    [Pg.180]    [Pg.201]    [Pg.206]    [Pg.155]    [Pg.440]    [Pg.452]    [Pg.1013]    [Pg.80]    [Pg.249]    [Pg.1]    [Pg.6]    [Pg.6]    [Pg.191]    [Pg.191]    [Pg.167]    [Pg.180]    [Pg.23]    [Pg.403]    [Pg.418]    [Pg.517]    [Pg.526]    [Pg.529]    [Pg.549]    [Pg.552]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Runoff

© 2024 chempedia.info