Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water systems, storage tanks

Most fuel system storage tanks, transfer lines, and underground pipelines are composed of 1018/1020 carbon steel. These system components are all susceptible to internal corrosion whenever fuel containing water is introduced. Other factors which can enhance fuel storage and transportation system corrosion include ... [Pg.73]

Drain water from storage tank system. [Pg.218]

First, what is an osmotic dehydration process In osmotic dehydration the product (in this case salmon) is in direct contact with a low-water-activity solution (e.g., concentrated salt) in which a two-way mass transfer is established (a) water is transferred from the product to the solution and (b) in the opposite direction, solute (in this case salt) is transferred from the solution to the salmon tissue. Now it is clear why it is necessary to inject salt into the system (storage tank) because the salmon product carries 3 % salt at the end of the process. [Pg.189]

For larger water supplies, a direct feed system can be used which doses the chemical by a metering pump directly to the point of application, without carrier water. Dedicated storage tanks are generally required for these direct feed applications. [Pg.65]

The model system storage tank was volume-calibrated and changes in liquid head were read with an externally mounted water manometer. High pressure gas was supplied from a small gas cylinder which was weighed before and after each test. The flow of pressurizing gas was manually controlled. [Pg.345]

Solids materials that are insoluble in hydrocarbon or water can be entrained in the crude. These are called bottom sediments and comprise fine particles of sand, drilling mud, rock such as feldspar and gypsum, metals in the form of minerals or in their free state such as iron, copper, lead, nickel, and vanadium. The latter can come from pipeline erosion, storage tanks, valves and piping systems, etc. whatever comes in contact with the crude oil. [Pg.327]

Fig. 38. Caustic purification system a, 50% caustic feed tank b, 50% caustic feed pumps c, caustic feed preheater d, amonia feed pumps e, ammonia feed preheater f, extractor g, trim heater h, ammonia subcooler i, stripper condenser j, anhydrous ammonia storage tank k, primary flash tank 1, evaporator reboiler m, evaporator n, caustic product transfer pumps o, purified caustic product cooler p, purified caustic storage tank q, ammonia stripper r, purified caustic transfer pumps t, overheads condenser u, evaporator v, evaporator vacuum pump w, aqueous storage ammonia tank x, ammonia scmbber y, scmbber condenser 2, ammonia recirculating pump aa, ammonia recycle pump. CW stands for chilled water. Fig. 38. Caustic purification system a, 50% caustic feed tank b, 50% caustic feed pumps c, caustic feed preheater d, amonia feed pumps e, ammonia feed preheater f, extractor g, trim heater h, ammonia subcooler i, stripper condenser j, anhydrous ammonia storage tank k, primary flash tank 1, evaporator reboiler m, evaporator n, caustic product transfer pumps o, purified caustic product cooler p, purified caustic storage tank q, ammonia stripper r, purified caustic transfer pumps t, overheads condenser u, evaporator v, evaporator vacuum pump w, aqueous storage ammonia tank x, ammonia scmbber y, scmbber condenser 2, ammonia recirculating pump aa, ammonia recycle pump. CW stands for chilled water.
The reactor effluent, containing 1—2% hydrazine, ammonia, sodium chloride, and water, is preheated and sent to the ammonia recovery system, which consists of two columns. In the first column, ammonia goes overhead under pressure and recycles to the anhydrous ammonia storage tank. In the second column, some water and final traces of ammonia are removed overhead. The bottoms from this column, consisting of water, sodium chloride, and hydrazine, are sent to an evaporating crystallizer where sodium chloride (and the slight excess of sodium hydroxide) is removed from the system as a soHd. Vapors from the crystallizer flow to the hydrate column where water is removed overhead. The bottom stream from this column is close to the hydrazine—water azeotrope composition. Standard materials of constmction may be used for handling chlorine, caustic, and sodium hypochlorite. For all surfaces in contact with hydrazine, however, the preferred material of constmction is 304 L stainless steel. [Pg.282]

Many stabilizer systems have been tailored to a particular industry need or for particular areas where dilution water quaUty is poor. These grades are heavily stabilized and may contain organic sequestering agents, ie, staimate, phosphates, and nitrate ions, so that the weak solutions produced by dilution from hard water retain acceptable stabihty. The nitrate is not a stabilizer, but it inhibits corrosion of aluminum storage tanks by chloride ion. [Pg.472]

Fig. 4. In the Solar Two Project a molten salt system shown in the scheme replaces Solar One s water/steam system. In operation, "cold" molten salt is pumped from a storage tank to a receiver on a tower. Sunlight reflected from a field of sun-tracking mirrors heats the salt in the receiver to 1050°C. The heated salt then flows down into a hot storage tank where it is pumped to a heat exchanger to produce the steam that drives a turbine. Some of the hot molten salt can also be stored to produce steam on demand at a later time. Salt cooled to 550°C in the steam generator recirculates through the system and... Fig. 4. In the Solar Two Project a molten salt system shown in the scheme replaces Solar One s water/steam system. In operation, "cold" molten salt is pumped from a storage tank to a receiver on a tower. Sunlight reflected from a field of sun-tracking mirrors heats the salt in the receiver to 1050°C. The heated salt then flows down into a hot storage tank where it is pumped to a heat exchanger to produce the steam that drives a turbine. Some of the hot molten salt can also be stored to produce steam on demand at a later time. Salt cooled to 550°C in the steam generator recirculates through the system and...
Acid cleaners based on sulfamic acid are used in a large variety of appHcations, eg, air-conditioning systems marine equipment, including salt water stills wells (water, oil, and gas) household equipment, eg, copper-ware, steam irons, humidifiers, dishwashers, toilet bowls, and brick and other masonry tartar removal of false teeth (50) dairy equipment, eg, pasteurizers, evaporators, preheaters, and storage tanks industrial boilers, condensers, heat exchangers, and preheaters food-processing equipment brewery equipment (see Beer) sugar evaporators and paper-mill equipment (see also Evaporation Metal surface treati nts Pulp). [Pg.64]

Cathodic Protection This electrochemical method of corrosion control has found wide application in the protection of carbon steel underground structures such as pipe lines and tanks from external soil corrosion. It is also widely used in water systems to protect ship hulls, offshore structures, and water-storage tanks. [Pg.2424]

It was likely that water entered the storage tank due to condensation of moisture-laden air that was sucked into the tank. As night fell and temperature decreased, moisture would condense and dilute the acid. Airdrying systems were not in good operating order. Suggestions were made to test acid water content, and if the acid was found to contain 10% water or more, acid was to be added to reduce water concentrations to below 5%. [Pg.179]

Rail cars, tank trucks, and some reactors and storage tanks were cleaned manually by personnel who entered the vessel fatalities occurred from unexpected or undetected low oxygen content or toxicity. An inherently safer system is a rotating pressurized water spray head that does the cleaning without vessel entry. [Pg.101]

LESF (Figure 3.4.5-5), exemplified for the large LOCA, is compared with SELF. Event tree headings are the refueling water storage tank (RWST) a passive component, an engineered safety system (SA-1) and four elements of the containment system. Other examples of the LESF method show human error in the event tree while the criteria for system success is usually in the tan It tree analysis. [Pg.117]

The safety improvements use redundancy and diversity to prevent and mitigate lents. The safety injection system (SIS) and emergency feedwater system (EFWS) are dedicated four train systems. Containment spray and safety injection pumps take water from the in-containment water storage tank (IRWST), thus, eliminating the need to switch from an external source and provide a. semi-closed system with continuous recirculation. Emergency core coolant flows direc nto the... [Pg.217]

Water is pumped from a storage tank located at the base of the unit to one or more spray nozzles that inject a fine water spray into the airstream. In large units, the air movement through the ductwork system ensures efficient mixing of the moisture and the air. Units used in small enclosures or rooms use a fan with the pump on the same shaft. [Pg.720]


See other pages where Water systems, storage tanks is mentioned: [Pg.118]    [Pg.118]    [Pg.217]    [Pg.298]    [Pg.132]    [Pg.33]    [Pg.263]    [Pg.186]    [Pg.381]    [Pg.441]    [Pg.240]    [Pg.244]    [Pg.348]    [Pg.102]    [Pg.273]    [Pg.155]    [Pg.306]    [Pg.468]    [Pg.263]    [Pg.411]    [Pg.471]    [Pg.2289]    [Pg.2494]    [Pg.184]    [Pg.505]    [Pg.597]    [Pg.207]    [Pg.213]    [Pg.216]    [Pg.216]    [Pg.253]    [Pg.254]    [Pg.311]    [Pg.364]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Storage system

Storage tank

Tank Systems

Water tank system

Water tanks

© 2024 chempedia.info