Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water structural information

With the microfocus instrument it is possible to combine the weak Raman scattering of liquid water with a water-immersion lens on the microscope and to determine spectra on precipitates in equilibrium with the mother liquor. Unique among characterization tools, Raman spectroscopy will give structural information on solids that are otherwise unstable when removed from their solutions. [Pg.438]

Recently Blake et al.153) made such studies in the case of human (HL) and tortoise egg-white (TEWL) lysozyme based on crystallographic refinements at 1,5 and 1,6 A resolution, respectively. By these investigations they attempted to obtain information on the perturbations of water structure in the hydration shell by neighboured protein molecules and by high salt concentrations as well as on the degree of order of the bound water. The authors came to the conclusion that the number of ordered water molecules are 128 in TEWL and 140 in HL, whereas the overall content is made up of 650 and 350 water molecules per lysozyme molecule. [Pg.28]

The results presented here for silicas and aluminas illustrate that there is a wealth of structural information in the infrared spectra that has not previously been recognized. In particular, it was found that adsorbed water affects the lattice vibrations of silica, and that particle-particle Interactions affect the vibrations of surface species. In the case of alumina, it was found that aluminum oxides and hydroxides could be distinguished by their infrared spectra. The absence of spectral windows for photoacoustic spectroscopy allowed more complete band identification of adsorbed surface species, making distinctions between different structures easier. The ability to perform structural analyses by infrared spectroscopy clearly indicates the utility of photoacoustic spectroscopy. [Pg.461]

At the present time, "interest in reversed micelles is intense for several reasons. The rates of several types of reactions in apolar solvents are strongly enhanced by certain amphiphiles, and this "micellar catalysis" has been regarded as a model for enzyme activity (. Aside from such "biomimetic" features, rate enhancement by these surfactants may be important for applications in synthetic chemistry. Lastly, the aqueous "pools" solubilized within reversed micelles may be spectrally probed to provide structural information on the otherwise elusive state of water in small clusters. [Pg.226]

Hydropolymer gel has been considered as a possible candidate for an artificial articular cartilage in artificial joints because it exhibits very low friction when it is in contact with a solid. The origin of such low friction is considered to be associated with the water absorbed in the gel [83-86], some of which is squeezed out from the gel under the load and serves as a lubricant layer between the gel and solid surface, resulting in hydrodynamic lubrication [87, 88]. Although the structural information about the interfacial water is important to understand the role of water for the low frictional properties of hydrogel in contact with a solid and the molecular structure of lubricants other than water at solid/solid interfaces have been investigated theoretically [89-91] and experimentally [92-98], no experimental investigations on water structure at gel/solid interfaces have been carried out due to the lack of an effective experimental technique. [Pg.89]

Infrared (IR) spectroscopy, especially when measured by means of the Fourier transform method (FTIR), is another powerful technique for the physical characterization of pharmaceutical solids [17]. In the IR method, the vibrational modes of a molecule are used to deduce structural information. When studied in the solid, these same vibrations normally are affected by the nature of the structural details of the analyte, thus yielding information useful to the formulation scientist. The FTIR spectra are often used to evaluate the type of polymorphism existing in a drug substance, and they can be very useful in studies of the water contained within a hydrate species. With modem instrumentation, it is straightforward to obtain FTIR spectra of micrometer-sized particles through the use of a microscope fitted with suitable optics. [Pg.7]

The elucidation of actinide chemistry in solution is important for understanding actinide separation and for predicting actinide transport in the environment, particularly with respect to the safety of nuclear waste disposal.72,73 The uranyl CO + ion, for example, has received considerable interest because of its importance for environmental issues and its role as a computational benchmark system for higher actinides. Direct structural information on the coordination of uranyl in aqueous solution has been obtained mainly by extended X-ray absorption fine structure (EXAFS) measurements,74-76 whereas X-ray scattering studies of uranium and actinide solutions are more rare.77 Various ab initio studies of uranyl and related molecules, with a polarizable continuum model to mimic the solvent environment and/or a number of explicit water molecules, have been performed.78-82 We have performed a structural investigation of the carbonate system of dioxouranyl (VI) and (V), [U02(C03)3]4- and [U02(C03)3]5- in water.83 This study showed that only minor geometrical rearrangements occur upon the one-electron reduction of [U02(C03)3]4- to [U02(C03)3]5-, which supports the reversibility of this reduction. [Pg.269]

As noted earlier, the diffraction of X-rays, unlike the diffraction of neutrons, is primarily sensitive to the distribution of 00 separations. Although many of the early studies 9> of amorphous solid water included electron or X-ray diffraction measurements, the nature of the samples prepared and the restricted angular range of the measurements reported combine to prevent extraction of detailed structural information. The most complete of the early X-ray studies is by Bon-dot 26>. Only scanty description is given of the conditions of deposition but it appears likely his sample of amorphous solid water had little or no contamination with crystalline ice. He found a liquid-like distribution of 00 separations at 83 K, with the first neighbor peak centered at 2.77 A. If the pair correlation function is decomposed into a superposition of Gaussian peaks, the area of the near neighbor peak is found to correspond to 4.23 molecules, and to have a root mean square width of 0.50 A. [Pg.127]

The most direct source of structural information, the diffraction studies, provides strong evidence for predominantly tetrahedral ordering of a molecule and its nearest neighbors, both in amorphous solid and liquid H2O. Other, weaker but still direct, structural evidence comes from the ratio of separations of nearest neighbor and next nearest neighbor 00 pairs in liquid water, the ubiquity of tetrahedral ordering in the several crystalline ices, and the statistical geometry of simulated water. [Pg.179]

The FD mass spectra provide qualitative distribution of various species in HTE polymers. Most importantly, the spectra also provide the structural information to prove the incorporation of one unit of modifier, ethylene glycol or water, in HTE polymers. This is also the first analysis that distinguishes HTE polymers synthesized in conjunction with ethylene glycol and water. The incorporation of one unit of modifier into the polymer chain has been estimated semi-quantitatively with H NMR method for the copolymerization of tetrahydrofuran and propylene oxide in conjunction with 1,4-butanediol as a modifier (7). [Pg.205]

Despite the fact that the structure of the interface between a metal and an electrolyte solution has been the subject of numerous experimental and theoretical studies since the early days of physical chemistry," our understanding of this important system is still incomplete. One problem has been the unavailability (until recently) of experimental data that can provide direct structural information at the interface. For example, despite the fact that much is known about the structure of the ion s solvation shell from experimental and theoretical studies in bulk electrolyte solutions, " information about the structure of the adsorbed ion solvation shell has been mainly inferred from the measured capacity of the interface. The interface between a metal and an electrolyte solution is also very complex. One needs to consider simultaneously the electronic structure of the metal and the molecular structure of the water and the solvated ions in the inhomogeneous surface region. The availability of more direct experimental information through methods that are sensitive to the microscopic... [Pg.116]

Much more detailed information about the microscopic structure of water at interfaces is provided by the pair correlation function which gives the joint probability of finding an atom of type/r at a position ri, and an atom of type v at a position T2, relative to the probability one would expect from a uniform (ideal gas) distribution. In a bulk homogeneous liquid, gfn, is a function of the radial distance ri2 = Iri - T2I only, but at the interface one must also specify the location zi, zj of the two atoms relative to the surface. We expect the water pair correlation function to give us information about the water structure near the metal, as influenced both by the interaction potential and the surface corrugation, and to reduce to the bulk correlation Inunction when both zi and Z2 are far enough from the surface. [Pg.132]

The various redox states of cytochrome P-450 (Fe ", Fe " " RH, Fe " " RH) as well as the metastable oxyferrous compound [(O2—Fe " ") RH] are obtained in ethylene glycol-water mixture their absorption spectra and formation rates are similar to those recorded in pure aqueous media. These identical spectra demonstrate that the intermediates obtained in the mixed solvent at normal and subzero temperatures are similar to those found in the productive enzyme pathway under normal conditions. This is an essential observation since the low-temperature procedure permits one to stabilize and accumulate intermediates and offers the opportunity of obtaining structural information about such intermediates—a result unattainable by classical fast-kinetic techniques. [Pg.253]

Ferredoxins (Fds) are widespread in the three domains of life and an abundance of sequence data and structural information are available for Fds isolated from several sources. In particular, the bacterial type Fds are small electron-transfer proteins that posses cubane xFe-yS clusters attached to the protein matrix by Fe ligation of Cys via a conserved consensus ligating sequence. The archaeal type ferredoxins are water-soluble electron acceptors for the acyl-coenzyme A forming 2-oxoacid/ferredoxin oxidoreductase, a key enzyme involved in the central archaeal metabolic pathways. Fds have been distinguished according to the number of iron and inorganic sulphur atoms, 2Fe-2S, 4Fe-4S/3Fe-4S (Fig. Ib-d) and Zn-containing Fds. [Pg.128]

MS, chemical ionization-MS, and sometimes GC/infrared spectroscopy (IR) have been used with GC/MS to obtain structural information. Examples of the use of GC/ MS for identifying new DBFs include the recent identification of iodo-acids. The iodo-acids were discovered in drinking water treated with chloramination through the use of full-scan GC/MS on the methylated extracts. Empirical formula information for both the molecular ions and the fragment ions was obtained by high-resolution electron ionization (EI)-MS, and the spectra were interpreted to yield tentative identifications of five new iodo-acids (iodoacetic acid, bromoiodoacetic acid, ( )-3-bromo-3-iodopropenoic acid, (Z)-3-bromo-3-iodopropenoic acid, and )-2-iodo-3-methylbutenedioic acid). Structural assignments were then confirmed by the match of mass spectra and GC retention times to authentic chemical standards, several of which had to be synthesized. [Pg.121]


See other pages where Water structural information is mentioned: [Pg.273]    [Pg.351]    [Pg.128]    [Pg.41]    [Pg.350]    [Pg.242]    [Pg.467]    [Pg.142]    [Pg.647]    [Pg.774]    [Pg.48]    [Pg.24]    [Pg.96]    [Pg.84]    [Pg.84]    [Pg.150]    [Pg.148]    [Pg.267]    [Pg.39]    [Pg.345]    [Pg.69]    [Pg.136]    [Pg.338]    [Pg.216]    [Pg.179]    [Pg.158]    [Pg.131]    [Pg.424]    [Pg.53]    [Pg.309]    [Pg.343]    [Pg.44]    [Pg.688]    [Pg.193]    [Pg.19]    [Pg.705]   
See also in sourсe #XX -- [ Pg.45 , Pg.47 ]




SEARCH



Structural information

Structural information structure

Structural water

Structure information

Structured water

Water structuring

Water, structure

© 2024 chempedia.info