Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water oil droplets

To develop an understanding of the emulsion flow in porous media, it is useful to consider differences and similarities between the flow of an OAV emulsion and simultaneous flow of oil and water in a porous medium. As discussed in the preceding section, in simultaneous flow of oil and water, both fluid phases are likely to occupy continuous, and to a large extent, separate networks of flow channels. Assuming the porous medium to be water-wet, the oil phase becomes discontinuous only at the residual saturation of oil, where the oil ceases to flow. Even at its residual saturation, the oil may remain continuous on a scale much larger than pores. In the flow of an OAV emulsion, the oil exists as tiny dispersed droplets that are comparable in size to pore sizes. Therefore, the oil and water are much more likely to occupy the same flow channels. Consequently, at the same water saturation the relative permeabilities to water and oil are likely to be quite different in emulsion flow. In normal flow of oil and water, oil droplets or ganglia become trapped in the porous medium by the process of snap-off of oil filament at pore throats (8). In the flow of an OAV emulsion, an oil droplet is likely to become trapped by the mechanism of straining capture at a pore throat smaller than the drop. [Pg.228]

Polymerization in microemulsions with a water/oil droplet structure yields closed-cell porous polymeric solids having a morphology characterized by a disjointed cellular structure in which the water pores are distributed as discrete pockets throughout the solid. [Pg.698]

Another type of gravity separator used for small amounts of oily water, the oil interceptor, is widely used both offshore and onshore. These devices work by encouraging oil particles to coalesce on the surface of plates. Once bigger oil droplets are formed they tend to float to the surface of the water faster and can be skimmed off. A corrugated plate interceptor (CPI) is shown below and demonstrates the principle involved. However there are many varieties available. Plate interceptors can typically reduce oil content to 50-150 ppm. [Pg.248]

Although it is hard to draw a sharp distinction, emulsions and foams are somewhat different from systems normally referred to as colloidal. Thus, whereas ordinary cream is an oil-in-water emulsion, the very fine aqueous suspension of oil droplets that results from the condensation of oily steam is essentially colloidal and is called an oil hydrosol. In this case the oil occupies only a small fraction of the volume of the system, and the particles of oil are small enough that their natural sedimentation rate is so slow that even small thermal convection currents suffice to keep them suspended for a cream, on the other hand, as also is the case for foams, the inner phase constitutes a sizable fraction of the total volume, and the system consists of a network of interfaces that are prevented from collapsing or coalescing by virtue of adsorbed films or electrical repulsions. [Pg.500]

Consider the case of an emulsion of 1 liter of oil in 1 liter of water having oil droplets of 0.6 /rm diameter. If the oil-water interface contains a close-packed monolayer of surfactant of 18 per molecule, calculate how many moles of surfactant are present. [Pg.527]

The oil droplets in a certain benzene-water emulsion are nearly uniform in size and show a diffusion coefficient of 3.75 x 10 cm /sec at 25°C. Estimate the number of benzene molecules in each droplet. [Pg.527]

Rubber processed in latex form accounts for about 10% of new mbber consumption. Rubber latex is a Hquid, oil-in-water emulsion which is used to make foam or thin-walled mbber articles. The same accelerators and antidegradants used in dry mbber are used in latex, with longer-chain versions preferred for greater oil solubiHty. To prepare these and other additives for addition to latex, they must be predispersed in water and the surface of the powder or oil droplet coated with a surface-active agent to prevent destabilization (coagulation) of the latex. [Pg.228]

A (macro)emulsion is formed when two immiscible Hquids, usually water and a hydrophobic organic solvent, an oil, are mechanically agitated (5) so that one Hquid forms droplets in the other one. A microemulsion, on the other hand, forms spontaneously because of the self-association of added amphiphilic molecules. During the emulsification agitation both Hquids form droplets, and with no stabilization, two emulsion layers are formed, one with oil droplets in water (o /w) and one of water in oil (w/o). However, if not stabilized the droplets separate into two phases when the agitation ceases. If an emulsifier (a stabilizing compound) is added to the two immiscible Hquids, one of them becomes continuous and the other one remains in droplet form. [Pg.196]

The most common types of emulsions consist of only two Hquids, water and an oil. An o/w emulsion consists of oil droplets dispersed in a continuous aqueous phase, and a w/o emulsion consists of water droplets dispersed in oil (Fig. 1). Occasionally inversion takes place an o/w emulsion changes into w/o emulsion and vice versa. More complex emulsions such as double emulsions are formed because the water droplets in a continuous oil phase themselves contain dispersed oil droplets (Fig. 2). Such oil-in-water-in-oil emulsions are noted as o/w/o. In the same manner a w/o/w emulsion may be formed, which finds use as a system for slow deHvery, extraction, etc (6,7). [Pg.196]

Fig. 1. In an oH-in-water (o/w) emulsion (a), macroscopic oil droplets are dispersed in water. In a water-in-oH (w/o) emulsion (b), the situation is... Fig. 1. In an oH-in-water (o/w) emulsion (a), macroscopic oil droplets are dispersed in water. In a water-in-oH (w/o) emulsion (b), the situation is...
Fig. 2. In an oH-in-water-in-oil (o/w/o) emulsion the water droplets in the oil phase themselves contain oil droplets. Fig. 2. In an oH-in-water-in-oil (o/w/o) emulsion the water droplets in the oil phase themselves contain oil droplets.
Two kinds of barriers are important for two-phase emulsions the electric double layer and steric repulsion from adsorbed polymers. An ionic surfactant adsorbed at the interface of an oil droplet in water orients the polar group toward the water. The counterions of the surfactant form a diffuse cloud reaching out into the continuous phase, the electric double layer. When the counterions start overlapping at the approach of two droplets, a repulsion force is experienced. The repulsion from the electric double layer is famous because it played a decisive role in the theory for colloidal stabiUty that is called DLVO, after its originators Derjaguin, Landau, Vervey, and Overbeek (14,15). The theory provided substantial progress in the understanding of colloidal stabihty, and its treatment dominated the colloid science Hterature for several decades. [Pg.199]

We have an emulsion of oil in water that we need to separate. The oil droplets have a mean diameter of lO " m, and the specific gravity Of the oil is 0.91. Applying a sedimentation centrifuge to effect the separation at a spedd of 5,000 rpm, and assuming that the distance of a droplet to the axis of rotation is 0.1 m, determine the droplet s radial settling velocity. [Pg.594]

Suspension polymerization of water-insoluble monomers (e.g., styrene and divinylbenzene) involves the formation of an oil droplet suspension of the monomer in water with direct conversions of individual monomer droplets into the corresponding polymer beads. Preparation of beaded polymers from water-soluble monomers (e.g., acrylamide) is similar, except that an aqueous solution of monomers is dispersed in oil to form a water-in-oil (w/o) droplet suspension. Subsequent polymerization of the monomer droplets produces the corresponding swollen hydrophilic polyacrylamide beads. These processes are often referred to as inverse suspension polymerization. [Pg.4]

The most important feature of o/w suspension polymerization is the formation of an oil droplet suspension of the monomer in the water and the maintenance of the individual droplets throughout the polymerization process. Droplet formation in an oil-in-water mixture is accomplished and controlled by two major factors mechanical stirring and the volume ratio of the monomer phase to water. The stirring speed is a key factor in controlling the size of oil droplets and the final size of the polymers. The stirring speed usually needs to be over... [Pg.4]

Producing a polystyrene (PS)-DVB copolymer of increasing porosity has been accomplished by dissolving 50-80% styrene, 10-50% divinylbenzene, and 30-70% of an inert organic liquid. Toluene is a solvent for the monomer but is a nonsolvent for the polymerized polymer. The monomer solution is then incorporated into water to form a dispersion of oil droplets followed by the polymerization of the suspended oil droplets from the aqueous medium into the polymer (21). [Pg.8]

The second step in the production of monodispersed polymer particles involves the swelling of activated particles with a monomer or a mixture of monomers, diluents, and porogens, and the shape of the swollen oil droplets must be maintained in the continuous aqueous phase. The monomer or the mixture of monomers may be added in bulk form, preferably as an aqueous dispersion to increase the rate of swelling, especially in the case of relatively water-insoluble monomers. [Pg.17]

When soaps are dispersed in water, the long hydrocarbon tails cluster together on the inside of a tangled, hydrophobic ball, while the ionic heads on the surface of the cluster stick out into the water layer. These spherical dusters, called micelles, are shown schematically in Figure 27.1. Grease and oil droplets... [Pg.1064]

Soap works by helping to break fat and oil droplets into small pieces. The pieces are coated with the soap, with the hydrocarbon chains attached to the fat, leaving the sodium ends dangling in the water. The oils are now completely surrounded by water, instead of being attached to skin or clothing, and so they rinse away easily. [Pg.207]

Some detergents and surfactants are used as emulsifying agents. An emulsifier keeps oil droplets and water droplets from joining together, so a thick mixture of oil and water will not separate. Examples of emulsions are mayonnaise, butter, cream, homogenized milk, and salad dressings. [Pg.212]

GA is well recognized as emulsifier used in essential oil and flavor industries. Randall et al., 1998, reported that the AGP complex is the main component responsible for GA ability to stabilize emulsions, by the association of the AGP amphiphilic protein component with the surface of oil droplets, while the hydrophilic carbohydrate fraction is oriented toward the aqueous phase, preventing aggregation of the droplets by electrostatic repulsion. However, only 1-2% of the gum is absorbed into the oil-water interface and participates in the emulsification thus, over 12% of GA content is required to stabilize emulsions with 20%... [Pg.7]


See other pages where Water oil droplets is mentioned: [Pg.153]    [Pg.551]    [Pg.372]    [Pg.598]    [Pg.599]    [Pg.591]    [Pg.592]    [Pg.153]    [Pg.551]    [Pg.372]    [Pg.598]    [Pg.599]    [Pg.591]    [Pg.592]    [Pg.210]    [Pg.204]    [Pg.506]    [Pg.516]    [Pg.2591]    [Pg.53]    [Pg.162]    [Pg.149]    [Pg.205]    [Pg.1442]    [Pg.1470]    [Pg.84]    [Pg.124]    [Pg.81]    [Pg.346]    [Pg.5]    [Pg.16]    [Pg.18]    [Pg.927]    [Pg.212]    [Pg.413]    [Pg.95]    [Pg.390]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Oil droplet

Oil in water droplet size

Oil or Water Droplets Containing an Adsorbed Polymeric Surfactant Steric Stabilisation

Oil-in-Water Emulsion Droplets and Micelles of the Stabilizing Surfactant

Oil-water

Water droplets

© 2024 chempedia.info