Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water molecule ionization

It can be seen from Table 2 that the intrinsic values of the pK s are close to the model compound value that we use for Cys(8.3), and that interactions with surrounding titratable residues are responsible for the final apparent values of the ionization constants. It can also be seen that the best agreement with the experimental value is obtained for the YPT structure suplemented with the 27 N-terminal amino acids, although both the original YPT structure and the one with the crystal water molecule give values close to the experimentally determined one. Minimization, however, makes the agreement worse, probably because it w s done without the presence of any solvent molecules, which are important for the residues on the surface of the protein. For the YTS structure, which refers to the protein crystallized with an SO4 ion, the results with and without the ion included in the calculations, arc far from the experimental value. This may indicate that con-... [Pg.193]

Aluminum hydroxide and aluminum chloride do not ionize appreciably in solution but behave in some respects as covalent compounds. The aluminum ion has a coordination number of six and in solution binds six molecules of water existing as [Al(H20)g]. On addition of a base, substitution of the hydroxyl ion for the water molecule proceeds until the normal hydroxide results and precipitation is observed. Dehydration is essentially complete at pH 7. [Pg.95]

Fig. 15. Ion movements in the electro dialysis process. Courtesy U.S. Agency for International Development, (a) Many of the substances which make up the total dissolved soHds in brackish water are strong electrolytes. When dissolved in water, they ionize ie, the compounds dissociate into ions which carry an electric charge. Typical of the ions in brackish water are Cl ,, HCO3, , and. These ions tend to attract the dipolar water molecules... Fig. 15. Ion movements in the electro dialysis process. Courtesy U.S. Agency for International Development, (a) Many of the substances which make up the total dissolved soHds in brackish water are strong electrolytes. When dissolved in water, they ionize ie, the compounds dissociate into ions which carry an electric charge. Typical of the ions in brackish water are Cl ,, HCO3, , and. These ions tend to attract the dipolar water molecules...
Reactions in Water. The ionization potential for bromine is 11.8 eV and the electron affinity is 3.78 eV. The heat of dissociation of the Br2 molecule is 192 kj (46 kcal). The reduction potentials for bromine and oxybromide anions in aqueous acid solutions at 25°C are (21) ... [Pg.281]

The basic function of lysis processes is to split molecules to permit further treatment. Hydrolysis is a chemical reaction in which water reacts with another substance. In the reaction, the water molecule is ionized while the other compound is split into ionic groups. Photolysis, another lysis process, breaks chemical bonds by irradiating a chemical with ultraviolet light. Catalysis uses a catalyst to achieve bond cleavage. [Pg.147]

The reactivity of the coordinated, deprotonated nucleophile is typically intermediate between that of the un-ionized and ionized forms of the nucleophile. Carboxypeptidase (Chapter 5) contains an active site Zn, which facilitates deprotonation of a water molecule in this manner. [Pg.512]

In the box below, which has a volume of 0.50 L, the symbol represents 0.10 mol of a weak acid, HB. The symbol 9 represents 0.10 mol of the conjugate base, B . Hydronium ions and water molecules are not shown. What is the percent ionization of the acid ... [Pg.363]

Irradiation of dilute aqueous solutions results in the interaction ofthe ionizing radiation with water molecules. The radiolysis of water produces hydrated electrons (eaq ", G = 2.8), hydrogen atoms (G = 0.6) and hydroxyl radicals (G = 2.8) which react with the molecules of the solutes. The use of special scavengers can convert one species to another, e.g. [Pg.898]

The concentrations of H30 + and OH are very low in pure water, which explains why pure water is such a poor conductor of electricity. To imagine the very tiny extent of autoprotolysis, think of each letter in this book as a water molecule. We would need to search through more than 50 books to find one ionized water molecule. The autoprotolysis reaction is endothermic (AH° = +56 kj-mol l), and so we can expect Kw to increase with temperature, and aqueous solutions to have higher concentrations of both hydronium and hydroxide ions at higher temperatures. Unless otherwise stated, all the calculations in this chapter will be for 25°C. [Pg.521]

FIGURE 10.9 As a result of autoprotolysis, pure water consists of hydronium ions and hydroxide ions as well as water molecules. The concentration of ions that results from autoprotolysis is only about 10 mol-L and so only about I molecule in ZOO million is ionized. The overlay shows only the ions. [Pg.521]

One of the most important types of aqueous equilibrium involves proton transfer from an acid to a base. In aqueous soiutions, water can act as an acid or a base. In the presence of an acid, symbolized HA, water acts as a base by accepting a proton. The equilibrium constant for transfer of a proton from an acid to a water molecule is caiied the acid ionization constant (Zg) ... [Pg.1185]

The strong base is a soluble hydroxide that ionizes completely in water, so the concentration of OH matches the 0.25 M concentration of the base. For the weak base, in contrast, the equilibrium concentration of OH is substantially smaller than the 0.25 M concentration of the base. At any instant, only 0.8% of the ammonia molecules have accepted protons from water molecules, producing a much less basic solution in which OH is a minor species. The equilibrium concentration of unproton-ated ammonia is nearly equal to the Initial concentration. Figure 17-7 summarizes these differences. [Pg.1228]

When water undergoes self-ionization, a range of cationic species are formed, the simplest of which is the hydronium ion, HjO (Clever, 1963). This ion has been detected experimentally by a range of techniques including mass spectrometry (Cunningham, Payzant Kebarle, 1972), as have ions of the type H+ (HaO) with values of n up to 8. Monte-Carlo calculations show that HjO ions exist in hydrated clusters surrounded by three or four water molecules in the hydration shell (Kochanski, 1985). These ions have only a short lifetime, since the proton is highly mobile and may be readily transferred from one water molecule to another. The time taken for such a transfer is typically of the order of 10 s provided that the receiving molecule of water is correctly oriented. [Pg.44]

As a increases, the average distance between ionized groups decreases so that these neighbouring groups begin to have an effect. When a exceeds 0-3, individual water spheres begin to overlap and eventually coalesce into a cylindrical form. With further increases in a, a second outer cylindrical sheath of water appears in which water molecules are oriented by the cooperative effect of two or more carboxyl groups. [Pg.74]

The current-producing steps (those producing electrons) are the ionization of adsorbed hydrogen atoms and the anodic formation of new species from water molecules ... [Pg.285]

There are basically two types of collector molecules ionizing and nonionizing compounds. The former dissociates into ions in water, while the latter does not. Ionizing collectors are classified in accordance with the type of ion (anion or cation) that causes the water-repellent effect in water. [Pg.197]

A hydrogen ion, H+, is a hydrogen atom which has shed its simple electron, and is therefore simply a proton. Rather than occurring by itself, it attaches itself to one or more water molecules, forming an ion such as hydronium ion, H30+. In order to emphasize the fact that a proton cannot exist by itself in aqueous solution, the ionization reaction of water is written as ... [Pg.466]

Like other ions in aqueous solution, both hydronium and hydroxide ions are hydrated. Moreover, hydrogen bonds are involved in attracting water molecules to hydronium and hydroxide ions. In both cases, three water molecules appear to be rather rigidly held, yielding formulas H30(H20)3 (or H90 ) and OH (H20)3 (or H7C>4). However, for convenience, the proton is usually discussed as though it occurred in the form of H+. Hydroxide ions, OH, also occur as hydrated ions, but like H+, they are written as though they were not hydrated. The ionization of water is thus written as... [Pg.466]

Polar compounds and compounds that ionize can dissolve readily in water. These compounds are said to be hydrophilic. In contrast to hydrophilic substances, hydrocarbons and other nonpolar substances have very low solubility in water because it is energetically more favorable for water molecules to interact with other water molecules rather than with nonpolar molecules. As a result, water molecules tend to exclude nonpolar substances, forcing them to associate with themselves in forming drops, thereby minimizing the contact area between... [Pg.25]


See other pages where Water molecule ionization is mentioned: [Pg.14]    [Pg.114]    [Pg.309]    [Pg.14]    [Pg.114]    [Pg.309]    [Pg.2591]    [Pg.2809]    [Pg.66]    [Pg.52]    [Pg.1225]    [Pg.261]    [Pg.30]    [Pg.381]    [Pg.123]    [Pg.190]    [Pg.8]    [Pg.52]    [Pg.74]    [Pg.42]    [Pg.588]    [Pg.593]    [Pg.622]    [Pg.30]    [Pg.320]    [Pg.168]    [Pg.169]    [Pg.169]    [Pg.247]    [Pg.248]    [Pg.30]    [Pg.210]    [Pg.241]    [Pg.286]   
See also in sourсe #XX -- [ Pg.296 ]




SEARCH



Ionization molecules

Water ionization

Water ionized

Water molecule

Water molecule molecules

© 2024 chempedia.info