Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water, iridium complex

Water, iridium complex, 26 124 ruthenium complex, 26 254 vanadium and chromium complexes, 27 307, 309... [Pg.371]

Reaction of the cyclopentadienyl rhodium and iridium tris(acetone) complexes with indole leads to the species 118 (M = Rh, Ir) [77JCS(D)1654 79JCS(D)1531]. None of these compounds deprotonates easily in acetone, but the iridium complex loses a proton in reaction with bases (Na2C03 in water, r-BuOK in acetone) to form the ri -indolyl complex 119. This reaction is easily reversed in the presence of small amounts of trifluoroacetic acid. [Pg.137]

More recently, the same type of hgand was used to form chiral iridium complexes, which were used as catalysts in the hydrogenation of ketones. The inclusion of hydrophihc substituents in the aromatic rings of the diphenylethylenediamine (Fig. 23) allowed the use of the corresponding complexes in water or water/alcohol solutions [72]. This method was optimized in order to recover and reuse the aqueous solution of the catalyst after product extraction with pentane. The combination of chiral 1,2-bis(p-methoxyphenyl)-N,M -dimethylethylenediamine and triethyleneglycol monomethyl ether in methanol/water was shown to be the best method, with up to six runs with total acetophenone conversion and 65-68% ee. Only in the seventh run did the yield and the enantioselectivity decrease slightly. [Pg.184]

Henbest and Mitchell [78] have shown that water can be used as hydrogen source with chloroiridic acid (6) as the catalyst through oxidation of phosphorous acid (59) to phosphoric acid (60) in aqueous 2-propanol. Under these conditions, no hydrogen transfer occurs from 2-propanol. However, iridium complexes with sulfoxide or phosphine ligands show the usual transfer from 2-pro-panol [79-81]. [Pg.599]

Aqueous organometalHc catalysis allows the use of NH3-solutions in water for the direct synthesis of amines from olefins in a combined hydroformylation/reductive amination procedure (Scheme 4.19). The hydroformylation step was catalyzed by the proven Rh/TPPTS or Rh/BINAS (44) catalysts, while the iridium complexes formed from the same phosphine ligands and [ IrCl(COD) 2] were found suitable for the hydrogenation of the intermediate imines. With sufficiently high NH3/olefin ratios (8/1) high selectivity towards the formation of primary amines (up to 90 %) could be achieved, while in an excess of olefin the corresponding... [Pg.138]

Recent mechanistic studies using HP infrared equipment, as well as HP-NMR measurements involving the use of CO and CH3I, have allowed the iridium intermediates which are present in solution as methyl acetate and water, and are consumed to produce acetic acid [.12, 34, 41-43], to be followed. All of these observations can be rationalized by a single catalytic cycle (see Figure 8.5), in which equilibria exist between the neutral and anionic complexes for all species. The main species involved in the carbonylation, which are detected in batch mode under carbonylation conditions [34], and correspond to the slower steps of catalysis, are the methyl—iridium and acetyl-iridium complexes [Ir(CH3)l3(CO)2] and [Ir(COCH3)l3(CO)2] respectively. [Pg.204]

With the knowledge that 14 can activate aldehydes in 1, the role of 1 in the reaction was explored further. Specifically, the relative rates of C—H bond activation and guest ejection, and the possibility of ion association with 1, were investigated. The hydrophobic nature of 14 could allow for ion association on the exterior of 1, which would be both cn t h al pi cal I y favorable due to the cation-it interaction, and entropically favorable due to the partial desolvation of 14. To explore these questions, 14 was irreversibly trapped in solution by a large phosphine, which coordinates to the iridium complex and thereby inhibits encapsulation. Two different trapping phosphines were used. The first, triphenylphosphine tris-sulfonate sodium salt (TPPTS), is a trianionic water-soluble phosphine and should not be able to approach the highly anionic 1, thereby only trapping the iridium complex that has diffused away from 1. The second phosphine, l,3,5-triaza-7-phosphaadamantane (PTA), is a water-soluble neutral phosphine that should be able to intercept an ion-associated iridium complex. [Pg.170]

As mentioned above in connection with the acetic acid synthesis, iridium complexes catalyze the water-gas shift reaction (equation 70). From IrCl3-3H20 and sulfonated derivatives of bipy and phen, water-soluble catalysts were obtained.444 Using dioxane as solvent, complexes of the type [Ir(cod)L2]+ (L= PMePh2, PPh3), [Ir(cod)L ]+ (L = diphos, phen, 4,7-Me2-phen, 4,7-Ph2-phen, 3,4,7,8-Me4-phen) and [Ir(cod)X] (X = 4,7-diphenylphenanthroline disulfonate) also catalyzed the reaction, with the anionic species being most active.470 The mechanism was thought... [Pg.278]

The catalytic cycle involves the same fundamental reaction steps as the rhodium system oxidative addition of Mel to Ir(I), followed by migratory CO insertion to form an Ir(III) acetyl complex, from which acetic acid is derived. However, there are significant differences in reactivity between analogous rhodium and iridium complexes which are important for the overall catalytic activity. In situ spectroscopy indicates that the dominant active iridium species present under catalytic conditions is the anionic Ir(III) methyl complex, [IrMe(CO)2l3] , by contrast to the rhodium system where the dominant complex is [Rh(CO)2l2] - PrMe(CO)2l3] and an inactive form of the catalyst, [Ir(CO)2l4] represent the resting states of the iridium catalyst in the anionic cycles for carbonylation and the WGSR respectively. At lower concentrations of water and iodide, [Ir(CO)3l] and [Ir(CO)3l3] are present due to the operation of related neutral cycles . [Pg.128]

In early patents by Halcon, molybdenum carbonyls are claimed to be active catalysts in the presence of nickel and iodide [23]. Iridium complexes are also reported to be active in the carbonylation of olefins, in the presence of other halogen [24] or other promoting co-catalysts such as phosphines, arsines, and stibines [25]. The formation of diethyl ketone and polyketones is frequently observed. Iridium catalysts are in general less active than comparable rhodium systems. Since the water-gas shift reaction becomes dominant at higher temperatures, attempts to compensate for the lack of activity by increasing the reaction temperature have been unsuccessful. [Pg.140]


See other pages where Water, iridium complex is mentioned: [Pg.91]    [Pg.204]    [Pg.217]    [Pg.113]    [Pg.159]    [Pg.204]    [Pg.77]    [Pg.114]    [Pg.67]    [Pg.66]    [Pg.173]    [Pg.317]    [Pg.278]    [Pg.184]    [Pg.197]    [Pg.80]    [Pg.705]    [Pg.369]    [Pg.364]    [Pg.1160]    [Pg.678]    [Pg.1849]    [Pg.445]    [Pg.278]    [Pg.578]    [Pg.148]    [Pg.33]    [Pg.400]   
See also in sourсe #XX -- [ Pg.26 , Pg.124 ]

See also in sourсe #XX -- [ Pg.26 , Pg.124 ]

See also in sourсe #XX -- [ Pg.26 , Pg.124 ]




SEARCH



Water complexes

Water complexity

Water, iridium complex vanadium and chromium complexes

Water-gas shift reaction iridium complexes

© 2024 chempedia.info