Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium intermediates

In an attempt to rationalize the factors that control selectivity in the Rh- and Ir-catalyzed hydroboration reactions, Fernandez and Bo [35] carried out experimental and theoretical studies on the H—B addition of catecholborane to vinylarenes with [M(C0D)(R-QUINAP)]BF4, (QUINAP = l-(2-diphenylphosphino-l-naphthyl) isoquinoHne). A considerable difference was found in the stability of the isomers when the substrate was coordinated to the iridium(I) or rhodium(I) complexes. In particular, the difference between pro-R B1 and pro-S B2 isomers was not so great when the metal center was iridium and not rhodium (Figure 7.1), which explains the low ee-values observed experimentally when asymmetric iridium-catalyzed hydroboration was performed. Structurally, the energy analysis of the n2 and Tti interactions [36] seems to be responsible for the extra stabilization of the B2 isomer in the iridium intermediates (Figure 7.1). The coordination and insertion of alkenes, then, could be considered key steps in the enantiodifferentiation pathway. [Pg.180]

Recent mechanistic studies using HP infrared equipment, as well as HP-NMR measurements involving the use of CO and CH3I, have allowed the iridium intermediates which are present in solution as methyl acetate and water, and are consumed to produce acetic acid [.12, 34, 41-43], to be followed. All of these observations can be rationalized by a single catalytic cycle (see Figure 8.5), in which equilibria exist between the neutral and anionic complexes for all species. The main species involved in the carbonylation, which are detected in batch mode under carbonylation conditions [34], and correspond to the slower steps of catalysis, are the methyl—iridium and acetyl-iridium complexes [Ir(CH3)l3(CO)2] and [Ir(COCH3)l3(CO)2] respectively. [Pg.204]

The ability to harness alkynes as effective precursors of reactive metal vinylidenes in catalysis depends on rapid alkyne-to-vinylidene interconversion [1]. This process has been studied experimentally and computationally for [MC1(PR3)2] (M = Rh, Ir, Scheme 9.1) [2]. Starting from the 7t-alkyne complex 1, oxidative addition is proposed to give a transient hydridoacetylide complex (3) vhich can undergo intramolecular 1,3-H-shift to provide a vinylidene complex (S). Main-group atoms presumably migrate via a similar mechanism. For iridium, intermediates of type 3 have been directly observed [3]. Section 9.3 describes the use of an alternate alkylative approach for the formation of rhodium vinylidene intermediates bearing two carbon-substituents (alkenylidenes). [Pg.280]

The need for a base additive in this reaction implies the intermediacy of acetylide complexes (Scheme 9.10). As in the Rh(III)-catalyzed reaction, vinylidene acetylide S4 undergoes a-insertion to give the vinyl-iridium intermediate 55. A [l,3]-propargyl/ allenyl metallatropic shift can give rise to the cumulene intermediate 56. The individual steps of Miyaura s proposed mechanism have been established in stoichiometric experiments. In the case of ( )-selective head-to-head dimerization, vinylidene intermediates are not invoked. The authors argue that electron-rich phosphine ligands affect stereoselectivity by favoring alkyne C—H oxidative addition, a step often involved in vinylidene formation. [Pg.293]

The main reaction path is believed to be the second route in which PPhs has been eliminated. This accounts for the relatively long induction times. Acyl- and alkyl-iridium intermediates have been isolated, including some containing only one phosphine ligand. [Pg.345]

Photolysis of [Ir(u5- neomenthyl)C5H4)(PMe3)(H)2l in cyclohexane or benzene leads to intermolecular C-H activation of solvoit molecules. Reaction of enantiopure [Ir(i) - neomenthyl -C5H4)(PMe3)(Me)(I)] with silver hexafluoroantimonate proceeds via a planar at iridium intermediate and a C-H oxidative addition. A p- elimination reaction completes the preparation of a hydrido-alkene cation which retains very high optical purity. ... [Pg.304]

Under severe conditions and at high temperatures, noble metal films may fail by oxidation of the substrate base metal through pores in the film. Improved life may be achieved by first imposing a harder noble metal film, eg, rhodium or platinum—iridium, on the substrate metal. For maximum adhesion, the metal of the intermediate film should ahoy both with the substrate metal and the soft noble-metal lubricating film. This sometimes requires more than one intermediate layer. For example, silver does not ahoy to steel and tends to lack adhesion. A flash of hard nickel bonds weh to the steel but the nickel tends to oxidize and should be coated with rhodium before applying shver of 1—5 p.m thickness. This triplex film then provides better adhesion and gready increased corrosion protection. [Pg.251]

Hardness of the aimealed metals covers a wide range. Rhodium (up to 40%), iridium (up to 30%), and mthenium (up to 10%) are often used to harden platinum and palladium whose intrinsic hardness and tensile strength are too low for many intended appHcations. Many of the properties of rhodium and indium. Group 9 metals, are intermediate between those of Group 8 and Group 10. The mechanical and many other properties of the PGMs depend on the physical form, history, and purity of a particular metal sample. For example, electrodeposited platinum is much harder than wrought metal. [Pg.163]

As already mentioned, complexes of chromium(iii), cobalt(iii), rhodium(iii) and iridium(iii) are particularly inert, with substitution reactions often taking many hours or days under relatively forcing conditions. The majority of kinetic studies on the reactions of transition-metal complexes have been performed on complexes of these metal ions. This is for two reasons. Firstly, the rates of reactions are comparable to those in organic chemistry, and the techniques which have been developed for the investigation of such reactions are readily available and appropriate. The time scales of minutes to days are compatible with relatively slow spectroscopic techniques. The second reason is associated with the kinetic inertness of the products. If the products are non-labile, valuable stereochemical information about the course of the substitution reaction may be obtained. Much is known about the stereochemistry of ligand substitution reactions of cobalt(iii) complexes, from which certain inferences about the nature of the intermediates or transition states involved may be drawn. This is also the case for substitution reactions of square-planar complexes of platinum(ii), where study has led to the development of rules to predict the stereochemical course of reactions at this centre. [Pg.187]

The chemistry of organorhodium and -iridium porphyrin derivatives will be addressed in a separate section. Much of the exciting chemistry of rhodium (and iridium) porphyrins centers around the reactivity of the M(ll) dimers. M(Por) 2-and the M(III) hydrides, M(Por)H. Neither of these species has a counterpart in cobalt porphyrin chemistry, where the Co(ll) porphyrin complex Co(Por) exists as a monomer, and the hydride Co(Por)H has been implicated but never directly observed. This is still the case, although recent developments are providing firmer evidence for the existence of Co(Por)H as a likely intermediate in a variety of reactions. [Pg.280]

One most important observation for the mechanistic discussion is the oxidative addition/insertion/reductive elimination processes of the iridium complex (31) (Scheme 1-10) [62]. The oxidative addition of catecholborane yields an octahedral iridium-boryl complex (32) which allows the anti-Markovnikov insertion of alkyne into the H-Ir bond giving a l-alkenyliridium(III) intermediate (34). The electron-... [Pg.12]

The hydrido(ethoxo) complex carrying an electron-donating q -CsMes (= Cp ) ligand, [Cp IrH(OEt)(PPh3)] (4), was prepared by a metathesis reaction between [Cp Ir Cl2(PR3)] (3) and NaOEt followed by P-H elimination from the intermediate diethox-ide complex (Eq. 6.4) [7]. Several other iridium alkoxide analogs [Cp IrH(OR)... [Pg.172]

The reaction of Vaska s compound (46) with diazomethane was reported in 1966 (81). A diethyl ether suspension of 46 afforded chloromethyl complex 52 on treatment with CH2N2 at -30°C, and a d6 iridium methylene complex 51 was proposed as the likely intermediate ... [Pg.157]

The insertion reactivity of the electrophilic iridium methylene species 57 was noted above. A cationic iridium methylene complex is also the likely intermediate in the thermal rearrangement of Ir(=CH2)I(CO)(PPh3)2 to the ortho-metallated ylide complex 75 ([Pg.167]

In 2011, Hartwig and coworkers reported the total synthesis of taiwaniaquinol B (55, Scheme 11.9), a member of a family of diterpenoids that are derived from the abietane skeleton [36]. A key aspect of the Hartwig synthesis of taiwaniaquinol B was the use of the iridium-catalyzed borylation reaction to accomplish the C(5) functionalization of resorcinol derivative 53. This regioselectivity for the overall bromination is complementary to that which would be obtained using a standard electrophilic aromatic substitution (EAS) reaction. In the transformation of 53 to 54, a sterically controlled borylation was first accomplished, which was then followed by treatment of the boronic ester intermediate with cupric bromide to... [Pg.267]


See other pages where Iridium intermediates is mentioned: [Pg.201]    [Pg.122]    [Pg.206]    [Pg.359]    [Pg.324]    [Pg.350]    [Pg.694]    [Pg.1190]    [Pg.399]    [Pg.201]    [Pg.201]    [Pg.122]    [Pg.206]    [Pg.359]    [Pg.324]    [Pg.350]    [Pg.694]    [Pg.1190]    [Pg.399]    [Pg.201]    [Pg.167]    [Pg.564]    [Pg.1083]    [Pg.79]    [Pg.7]    [Pg.180]    [Pg.208]    [Pg.20]    [Pg.403]    [Pg.52]    [Pg.92]    [Pg.232]    [Pg.93]    [Pg.105]    [Pg.159]    [Pg.514]    [Pg.120]    [Pg.191]    [Pg.109]    [Pg.120]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Iridium hydride intermediates

Iridium-catalyzed dehydrogenation intermediates

© 2024 chempedia.info