Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity microscopic

While the hydrodynamic theory always predicts this near equivalence of the friction and the viscosity, microscopic theories seem to provide a rather different picture. In the mode coupling theory (MCT), the friction on a tagged molecule is expressed in terms of contributions from the binary, density, and transverse current modes. The latter can of course be expressed in terms of viscosity. However, in a neat liquid the friction coefficient is primarily determined not by the transverse current mode but rather by the binary collision and the density fluctuation terms [59]. Thus for neat liquids there is no a priori reason for such an intimate relation between the friction and viscosity to hold. [Pg.135]

The use of bromine in alkaline media resulted in the formation of uronic acids.416,417 Oxidation to some non-uronic acid products, (carbonyl compounds) accompanied the major oxidation pathway.418-420 The 2,2,6,6-tetramethyl-l-piperidinyloxy-mediated oxidation by hypobromite was highly selective for the 6-OH groups of the glucose residues.421 Potassium bromate (HB1-O3) was also used.338 The kinetics of oxidation with bromine at pH 6-8 has been studied 422 It was observed that oxidation decreases the heat and temperature of gelation as the oxidation proceeds. Simultaneously, the molecular weight of starch and the viscosity of its aqueous solutions decreased. Subsequent reduction of the oxidation products increased the viscosity. Microscopic observations revealed that the starch granularity vanished at a low level of oxidation.423... [Pg.201]

Twelve oxyethylated fatty alcohols with various lengths of alkyl chain and ethylene oxide were used in this investigation. In view of numerous literature data available, physicochemical tests were limited to measurements of surface tension, wettability and viscosity. Microscope photographs were taken in polarized light in order to confirm the appearance of liquid crystalline structures. As expected, formation of micelles was observed at low concentrations, whereas mesophases (hexagonal and lamellar) were identifled at concentrations of about 50% to 70%. [Pg.341]

The relation between the microscopic friction acting on a molecule during its motion in a solvent enviromnent and macroscopic bulk solvent viscosity is a key problem affecting the rates of many reactions in condensed phase. The sequence of steps leading from friction to diflfiision coefficient to viscosity is based on the general validity of the Stokes-Einstein relation and the concept of describing friction by hydrodynamic as opposed to microscopic models involving local solvent structure. In the hydrodynamic limit the effect of solvent friction on, for example, rotational relaxation times of a solute molecule is [ ]... [Pg.853]

Furtlier details can be found elsewhere [20, 78, 82 and 84]. An approach to tire dynamics of nematics based on analysis of microscopic correlation fimctions has also been presented [85]. Various combinations of elements of tire viscosity tensor of a nematic define tire so-called Leslie coefficients [20, 84]. [Pg.2558]

Emulsion Process. The emulsion polymerization process utilizes water as a continuous phase with the reactants suspended as microscopic particles. This low viscosity system allows facile mixing and heat transfer for control purposes. An emulsifier is generally employed to stabilize the water insoluble monomers and other reactants, and to prevent reactor fouling. With SAN the system is composed of water, monomers, chain-transfer agents for molecular weight control, emulsifiers, and initiators. Both batch and semibatch processes are employed. Copolymerization is normally carried out at 60 to 100°C to conversions of - 97%. Lower temperature polymerization can be achieved with redox-initiator systems (51). [Pg.193]

Oil reservoirs are layers of porous sandstone or carbonate rock, usually sedimentary. Impermeable rock layers, usually shales, and faults trap the oil in the reservoir. The oil exists in microscopic pores in rock. Various gases and water also occupy rock pores and are often in contact with the oil. These pores are intercoimected with a compHcated network of microscopic flow channels. The weight of ovedaying rock layers places these duids under pressure. When a well penetrates the rock formation, this pressure drives the duids into the wellbore. The dow channel size, wettabiUty of dow channel rock surfaces, oil viscosity, and other properties of the cmde oil determine the rate of this primary oil production. [Pg.188]

Viscoelastic Measurement. A number of methods measure the various quantities that describe viscoelastic behavior. Some requite expensive commercial rheometers, others depend on custom-made research instmments, and a few requite only simple devices. Even quaHtative observations can be useful in the case of polymer melts, paints, and resins, where elasticity may indicate an inferior batch or unusable formulation. Eor example, the extmsion sweU of a material from a syringe can be observed with a microscope. The Weissenberg effect is seen in the separation of a cone and plate during viscosity measurements or the climbing of a resin up the stirrer shaft during polymerization or mixing. [Pg.192]

Boundary lubrication is perhaps best defined as the lubrication of surfaces by fluid films so thin that the friction coefficient is affected by both the type of lubricant and the nature of the surface, and is largely independent of viscosity. A fluid lubricant introduced between two surfaces may spread to a microscopically thin film that reduces the sliding friction between the surfaces. The peaks of the high spots may touch, but interlocking occurs only to a limited extent and frictional resistance will be relatively low. [Pg.844]

The solidity of gel electrolytes results from chain entanglements. At high temperatures they flow like liquids, but on cooling they show a small increase in the shear modulus at temperatures well above T. This is the liquid-to-rubber transition. The values of shear modulus and viscosity for rubbery solids are considerably lower than those for glass forming liquids at an equivalent structural relaxation time. The local or microscopic viscosity relaxation time of the rubbery material, which is reflected in the 7], obeys a VTF equation with a pre-exponential factor equivalent to that for small-molecule liquids. Above the liquid-to-rubber transition, the VTF equation is also obeyed but the pre-exponential term for viscosity is much larger than is typical for small-molecule liquids and is dependent on the polymer molecular weight. [Pg.513]

Thermodynamic, statistical This discipline tries to compute macroscopic properties of materials from more basic structures of matter. These properties are not necessarily static properties as in conventional mechanics. The problems in statistical thermodynamics fall into two categories. First it involves the study of the structure of phenomenological frameworks and the interrelations among observable macroscopic quantities. The secondary category involves the calculations of the actual values of phenomenology parameters such as viscosity or phase transition temperatures from more microscopic parameters. With this technique, understanding general relations requires only a model specified by fairly broad and abstract conditions. Realistically detailed models are not needed to un-... [Pg.644]

The influence of the lipophilic external phase on the production of xylan-based microparticles by interfacial cross-linking polymerization has been investigated (Nagashima et al., 2008). Three different external phases were investigated a 1 4 (v/v) chloroform cyclohexane mixture, soybean oil, and a medium chain triglyceride, with viscosities below 1, 24, and 52 cP, respectively. It was observed that the use of these different lipid phases results in different macroscopic and microscopic aspects of the system (Figure 10). [Pg.73]

In fluid dynamics the behavior in this system is described by the full set of hydrodynamic equations. This behavior can be characterized by the Reynolds number. Re, which is the ratio of characteristic flow scales to viscosity scales. We recall that the Reynolds number is a measure of the dominating terms in the Navier-Stokes equation and, if the Reynolds number is small, linear terms will dominate if it is large, nonlinear terms will dominate. In this system, the nonlinear term, (u V)u, serves to convert linear momentum into angular momentum. This phenomena is evidenced by the appearance of two counter-rotating vortices or eddies immediately behind the obstacle. Experiments and numerical integration of the Navier-Stokes equations predict the formation of these vortices at the length scale of the obstacle. Further, they predict that the distance between the vortex center and the obstacle is proportional to the Reynolds number. All these have been observed in our 2-dimensional flow system obstructed by a thermal plate at microscopic scales. ... [Pg.250]

During the production of the chapter, a current review of the RFOT theory has appeared in print [V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007)]. In addition, microscopic descriptions of the onset of activationless reconfigurations [J. D. Stevenson, J. Schmalian, and P. G Wolynes, Nat. Phys. 2, 268 (2006)] and prefactors for viscosity and ionic conductivity of deeply supercooled melts [V. Lubchenko, J. Chem. Phys. 126, 174503 (2007)] are now available. [Pg.202]

To study reaction kinetics, cement batches of total mass 300 g were prepared using ingredients measured to the nearest 0-1 g. Mixing was carried out for 10 minutes using a kitchen blender, after which specimens were cast in slabs 10 x 10 x 1-2-1-5 cm in polyethylene moulds. When the setting reaction had proceeded to a sufficient extent and viscosity had risen to give a reasonably stiff paste, a small portion was removed, placed on a glass microscope slide and immediately examined by X-ray diffraction. The remainder of the sample was allowed to set. [Pg.293]


See other pages where Viscosity microscopic is mentioned: [Pg.664]    [Pg.690]    [Pg.820]    [Pg.853]    [Pg.854]    [Pg.855]    [Pg.890]    [Pg.171]    [Pg.230]    [Pg.332]    [Pg.289]    [Pg.28]    [Pg.270]    [Pg.598]    [Pg.358]    [Pg.438]    [Pg.34]    [Pg.2]    [Pg.595]    [Pg.464]    [Pg.488]    [Pg.505]    [Pg.513]    [Pg.101]    [Pg.121]    [Pg.90]    [Pg.232]    [Pg.27]    [Pg.29]    [Pg.116]    [Pg.587]    [Pg.394]    [Pg.124]    [Pg.140]    [Pg.413]   
See also in sourсe #XX -- [ Pg.119 ]

See also in sourсe #XX -- [ Pg.119 ]




SEARCH



© 2024 chempedia.info