Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity diffusion

Another parameter that plays an important role in unifying viscosity, diffusion, and sedimentation is the friction factor. This proportionality factor between velocity and the force of frictional resistance was introduced in Chap. 2, and its role in interrelating the topics of this chapter is reflected in the title of the chapter. [Pg.584]

Reactions. Supercritical fluids are attractive as media for chemical reactions. Solvent properties such as solvent strength, viscosity, diffusivity, and dielectric constant may be adjusted over the continuum of gas-like to Hquid-like densities by varying pressure and temperature. Subsequently, these changes can be used to affect reaction conditions. A review encompassing the majority of studies and apphcations of reactions in supercritical fluids is available (96). [Pg.227]

The physical properties of the mobile phase, mainly viscosity, diffusivity and solubility, affect the flow characteristics, column efficiency (kinetics), and retention (thermodynamics) in the chromatographic process. These physical properties are affected by temperature. Chromatographic techniques, although basically simple in... [Pg.172]

For dilute, teal gases, where ternary and higher collisions can be neglected, the angle of deflection can be employed to evaluate a number of physical properties. Of course appropriate distributions of the values of g and b must be introduced. The resulting expressions for the virial coefficients and the transport properties (viscosity, diffusion and thermal conductivity) are quite complicated. The interested reader is referred to advanced books on this subject... [Pg.79]

The so-called glass transition temperature, Tg, must be considered below this temperature the liquid configuration is frozen in a structure corresponding to equilibrium at Tg. Around Tg a rather abrupt change is observed of several properties as a function of temperature (viscosity, diffusion, molar volume). Above 7 , for instance, viscosity shows a strong temperature dependence below Tg only a rather weak temperature dependence is observed, approximately similar to that of crystal. Notice that 7 is not a thermodynamically defined temperature its value is determined by kinetic considerations it also depends on the quenching rate. [Pg.208]

The ionic conductivity of a solution depends on the viscosity, diffusivity, and dielectric constant of the solvent, and the dissociation constant of the molecule. EFL mixtures can carry charge. The conductivity of perfluoroacetate salts in EFL mixtures of carbon dioxide and methanol is large (10 to 10 " S/cm for salt concentrations of 0.05-5 mM) and increases with salt concentration. The ionic conductivity of tetra-methylammonium bicarbonate (TMAHCO3) in methanol/C02 mixtures has specific conductivities in the range of 9-14 mS/cm for pure methanol at pressures varying from 5.8 to 14.1 MPa, which decreases with added CO2 to a value of 1-2 mS/cm for 0.50 mole fraction CO2 for all pressures studied. When as much as 0.70 mole fraction... [Pg.430]

Laguerie, C., Aubry, M., and Couderc, J.P. Some physicochemical data on monohydrate citric acid solutions in water solubility, density, viscosity, diffusivity, pH of standard solution, and refractive index, / Chem. Eng. Data, 21(l) 85-87,1976. [Pg.1684]

Debye, P.J. and Bueche, A.M. 1948. Intrinsic viscosity, diffusion, and sedimentation rates of pol5miers in solution. J. Chem. Phys., 16 573. [Pg.82]

If input data are known accurately and there is not much variation in viscosity, diffusivity, and density of the boundary layer, the calculation is likely accurate to within 20% relative. If the viscosity, diffusivity, and density vary significantly across the boundary layer, then some average values of these parameters may be used, and the degree of accuracy is not known. [Pg.412]

The physical properties of solvents greatly influence the choice of solvent for a particular application. The solvent should be liquid under the temperature and pressure conditions at which it is employed. Its thermodynamic properties, such as the density and vapor pressure, temperature and pressure coefficients, as well as the heat capacity and surface tension, and transport properties, such as viscosity, diffusion coefficient, and thermal conductivity, also need to be considered. Electrical, optical, and magnetic properties, such as the dipole moment, dielectric constant, refractive index, magnetic susceptibility, and electrical conductance are relevant, too. Furthermore, molecular... [Pg.51]

The volatility, viscosity, diffusion coefficient and relaxation rates of solvents are described quantitatively by their structuredness. This property can be expressed by stiffness, openness, or ordering (Marcus, 1998a). [Pg.53]

Just as diffusive momentum transfer depends on a transport property of the fluid called viscosity, diffusive heat transfer depends on a transport property called thermal conductivity. This section provides a brief discussion on the functional forms of thermal conductivity, with the intent of facilitating the understanding of the heat-transfer discussions in the subsequent sections on the conservation of energy. [Pg.98]

The second part of the chapter is devoted to the effect of pressure on heat and mass transfer. After a brief survey on fundamentals the estimation of viscosity, diffusivity in dense gases, thermal conductivity and surface tension is explained. The application of these data to calculate heat transfer in different arrangements and external as well as internal mass transfer coefficients is shown. Problems at the end of the two main parts of this chapter illustrate the numerical application of the formulas and the diagrams. [Pg.65]

In order to calculate the numerical values of transfer coefficients, values of the molecular properties are required. In the next section, we present estimation methods for viscosity, diffusivity, thermal conductivity and surface tension, for the high-pressure gas. [Pg.96]

Transport phenomena and other dynamic processes in lyotropic liquid crystals have received relatively little research attention. However, they can be quite important in practice because relatively long times are often required to reach equilibrium when a liquid crystal is present. Moreover, understanding of equilibrium behavior seems to have reached a point where additional work on dynamic phenomena would be productive. Accordingly, the available information on such phenomena is reviewed. It consists mainly of measurements of viscosity, diffusivity, electrical conductivity, and chemical reaction rates in liquid crystalline materials. Some possible areas for future research are identified and discussed briefly. [Pg.92]

Kobayashi, H. Molecular weight dependence of intrinsic viscosity, diffusion constant, and second virial coefficient of polyacrylonitrile. J. Polymer Sci. 39, 369-388 (1959). [Pg.439]

Initial studies of phenol SCWO Involved in extensive SCWO study Investigated the unique features of supercritical water in terms of density, dielectric constant, viscosity, diffusivity, electric conductance, and solvating ability Treatment of hazardous organic compounds Application of SCWO to the decomposition of sludges Found that sludge readily decomposes at near-critical water conditions with 02 or H202 as an oxidant in a batch or continuous flow reactor Treatment of sludges... [Pg.395]

The dielectric constant of supercritical water is in the range of 2 to 3. This range is similar to the range of nonpolar solvents such as hexane or heptane, which have dielectric constants of 1.8 and 1.9, respectively. When hazardous wastes are heated to high temperature and pressure, physical properties such as density, dielectric constant, viscosity, diffusivity, electric conductance, and solubility are optimum for destroying organic pollutants. Table 10.2 lists the characteristics of supercritical water, and Figure 10.3 illustrates the influence of temperature and pressure on the dielectric constants and density of water. As both temperature and pressure increase, the dielectric constants and density of water decrease dramatically. [Pg.396]

Luby-Phelps, K. (2000) Cytoarchitecture and physical properties of cytoplasm volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol, 192. [Pg.204]

It is well established that between Tg and about Tg + 50 K, the relaxation kinetics obeys the WLF law (Williams et al., 1955). If Pr is a property depending on the macromolecular mobility (relaxation modulus, complex modulus, viscosity, diffusion rate, etc.), the time-temperature equivalence principle may be formulated as... [Pg.328]

The volatility, viscosity, diffusion coefficient and relaxation rates of solvents are closely connected with the self-association of the solvents, described quantitatively by their structuredness. This property has several aspects that can be denoted by appropriate epithets (Bennetto and Caldin 1971). One of them is stiffness expressible by the internal pressure, the cohesive energy density, the square of the solubility parameter, see Chapter 3, or the difference between these two. Another aspect is openness expressible by the compressibility or the fluidity, the reciprocal of the viscosity, of the solvent (see Chapter 3). A further... [Pg.218]

The coefficients of transport properties considered here include the viscosity, diffusivity, and thermal conductivity of a gas. The transport coefficients vary with gas properties if the flow is laminar. When the flow is turbulent, the transport coefficients become strongly dependent on the turbulence structure. Here we only deal with the laminar transport coefficients the discussion of the turbulent transport coefficients is given in 5.2.4. [Pg.173]

Potential energy surfaces can be built starting from experimental data (e.g., bond strengths, geometries, infrared and fluoresence spectra, molecular beam scattering cross sections, viscosity, diffusion coefficients, line broadening... [Pg.22]

The usefulness of the flow terms as common characteristics for transport processes allows them to illustrate such seemingly diverse processes as convection, momentum transport (viscosity), diffusion and heat conductance. To simplify the written expression, the flux components of the four processes are expressed in Eq. (7-3) in the direction of one axis of the coordinate system whereby, instead of the partial derivative for the function, a variable and useful form of the derivative expression is used ... [Pg.184]


See other pages where Viscosity diffusion is mentioned: [Pg.551]    [Pg.474]    [Pg.1120]    [Pg.782]    [Pg.817]    [Pg.82]    [Pg.179]    [Pg.177]    [Pg.252]    [Pg.67]    [Pg.124]    [Pg.10]    [Pg.130]    [Pg.139]    [Pg.4]    [Pg.512]    [Pg.731]    [Pg.12]    [Pg.241]    [Pg.1114]    [Pg.184]    [Pg.297]   
See also in sourсe #XX -- [ Pg.584 ]




SEARCH



Diffuse double layer viscosity

Diffusion coefficient solvent viscosity effect

Diffusion coefficient viscosity

Diffusion constant viscosity effects

Diffusion internal viscosity effect

Diffusion shear viscosity

Diffusion theory viscosity

Diffusion viscosity and

Diffusivity and viscosity

Diffusivity viscosity

Diffusivity viscosity

Eddy diffusion kinematic viscosity

Heat Conduction, Viscosity, and Diffusion

Segmental diffusion solution viscosity

Segmental diffusion viscosity

Self-diffusion coefficient viscosity correlation

Self-diffusion viscosity

Solvent diffusion viscosity

Transition temperature Viscosity, Diffusion

Transport Properties (Diffusivity, Viscosity, Heat Conduction)

Transport properties Viscosity, Diffusion

Viscosity Index Distributions in Base Stocks Use of Thermal Diffusion

Viscosity and Self-diffusion Coefficient

Viscosity effect upon diffusion

Viscosity-Diffusivity Relationships

© 2024 chempedia.info