Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscoelastic reviews

These normal stresses are more pronounced for polymers with a very broad molecular weight distribution. Viscosities and viscoelastic behavior decrease with increasing temperature. In some cases a marked viscosity decrease with time is observed in solutions stored at constant temperature and 2ero shear. The decrease may be due to changes in polymer conformation. The rheological behavior of pure polyacrylamides over wide concentration ranges has been reviewed (5). [Pg.140]

The resistance to plastic flow can be schematically illustrated by dashpots with characteristic viscosities. The resistance to deformations within the elastic regions can be characterized by elastic springs and spring force constants. In real fibers, in contrast to ideal fibers, the mechanical behavior is best characterized by simultaneous elastic and plastic deformations. Materials that undergo simultaneous elastic and plastic effects are said to be viscoelastic. Several models describing viscoelasticity in terms of springs and dashpots in various series and parallel combinations have been proposed. The concepts of elasticity, plasticity, and viscoelasticity have been the subjects of several excellent reviews (21,22). [Pg.271]

Detailed treatments of the rheology of various dispersed systems are available (71—73), as are reviews of the viscous and elastic behavior of dispersions (74,75), of the flow properties of concentrated suspensions (75—82), and of viscoelastic properties (83—85). References are also available that deal with blood red ceU suspensions (69,70,86). [Pg.173]

As mentioned earlier, the contact-mechanics-based experimental studies of interfacial adhesion primarily include (1) direct measurements of surface and interfacial energies of polymers and self-assembled monolayers (2) quantitative studies on the role of interfacial coupling agents in the adhesion of elastomers (3) adhesion of microparticles on surfaces and (4) adhesion of viscoelastic polymer particles. In these studies, a variety of experimental tools have been employed by different researchers. Each one of these tools offers certain advantages over the others. These experimental studies are reviewed in Section 4. [Pg.80]

In the earlier art, there was some consideration that partial incompatibility of the tackifier resin with the rubber was responsible for the appearance of tack, but this no longer is seriously held in light of continuing studies by many investigators. Aubrey [38] has addressed this in his review of the mechanism of tackification and the viscoelastic nature of pressure sensitive adhesives. Chu [39] uses the extent of modulus depression with added tackifier as a measure of compatibility. Thus in a plot of modulus vs. tackifier concentration, the resin that produces the deepest minimum is the most compatible. On this basis, Chu rates the following resins in order of compatibility for natural rubber rosin ester > C-5 resin > a-pinene resin > p-pinene resin > aromatic resin. [Pg.478]

In the preparation and processing of ionomers, plasticizers may be added to reduce viscosity at elevated temperatures and to permit easier processing. These plasticizers have an effect, as well, on the mechanical properties, both in the rubbery state and in the glassy state these effects depend on the composition of the ionomer, the polar or nonpolar nature of the plasticizer and on the concentration. Many studies have been carried out on plasticized ionomers and on the influence of plasticizer on viscoelastic and relaxation behavior and a review of this subject has been given 119]. However, there is still relatively little information on effects of plasticizer type and concentration on specific mechanical properties of ionomers in the glassy state or solid state. [Pg.150]

In this approach the reviews concerned the rheology involving the linear viscoelastic behavior of plastics and how such behavior is affected by temperature. Next is to extend this knowledge to the complex behavior of crystalline plastics, and finally illustrate how experimental data were applied to a practical example of the long-time mechanical stability. [Pg.42]

As reviewed thermoplastics (TPs) being viscoelastic materials respond to induced stress by two mechanisms viscous flow and elastic deformation. Viscous flow ultimately dissipates the applied mechanical energy as frictional heat and results in permanent material deformation. Elastic deformation stores the applied mechanical energy as completely recoverable material deformation. The extent to which one or the other of these mechanisms dominates the overall response of the material is determined by the temperature and by the duration and magnitude of the stress or strain. The higher the temperature, the most freedom of movement of the individual plastic molecules that comprise the... [Pg.45]

Anseth et al. [20] have reviewed the literature dealing with the mechanical properties of hydrogels and have considered in detail the effects of gel molecular structure, e.g., cross-linking, on bulk mechanical properties using theories of rubber elasticity and viscoelasticity. [Pg.556]

Arbabi, S Sahimi, M, Critical Properties of Viscoelasticity of Gels and Elastic Percolation Networks, Physical Review Letters 65, 725, 1990. [Pg.608]

We begin in Section II with a review of the fundamental concepts of hydrodynamics and boundary conditions. In Section III, we present some common descriptions of coupling, followed in Section IV by a discussion of viscoelastic adsorbate films and the so-called inner slip. In Section V, we consider with the concept of stochastic boundary conditions, which we believe will be an important topic in situations where random fluctuations are strong. Finally, in Section VI, we present our concluding ideas and discuss some areas for future study. [Pg.62]

Shanahan and Carre [31-36, 55, 56] have done extensive theoretical work on the coating of viscoelastic surfaces and the effect of soft surfaces on hydrodynamic forces. Again, we have considered this area in a recent review [44]. This area is important in how energy is transferred or lost at the interface. Coupling changes at an inner interface can result in either an increase or decease in the energy dissipated. This has been discussed and observed for a number of acoustic systems [40, 41, 54, 57, 58]. [Pg.78]

The challenges involved in the material properties of PPC relate to its thermal features, i.e., its thermal decomposition, and the glass transition temperature (Tg) of about body temperature of the otherwise amorphous polymer. These have implications for processing and application of the material. This review will discuss consecutively the thermal, viscoelastic, and mechanical properties of PPC and the experiences in processing PPC and its composites. The properties of solutions of PPC will also be presented, and the biodegradabUity and biocompatibility discussed. Spectroscopic properties will not be discussed. Further information on NMR data can be found in the following references [2, 10-12]. A t3 pical spectrum is shown in Fig. 2 [13]. [Pg.31]

Stockmayer and Fixman (2) summarised the state of knowledge of the dilute solution properties of branched polymers in 1953. Dexheimer and co-workers (10) have given a comprehesive survey of the literature up to 1968, including the effects of branching (both short and long) on properties. Nagasawa and Fujimoto (11) have reviewed the results of work on rationally synthesised branched polymers (mostly polystyrenes) up to 1973, with particular reference to their viscoelastic properties. [Pg.5]

This article builds upon an earlier review on the same subject by Porter and Johnson in 1966 (14), and on the recent treatise on viscoelasticity in polymers by Ferry (15). We have generally tried to maintain the same nomenclature as the latter. Recent reviews on the relation between the zero-shear viscosity and molecular structure (16), crosslinked networks (17), and flow birefringence (18) in this same journal cover portions of the subject. We have tried to minimise redundancy with these works while at the same time making the review reasonably self-contained. [Pg.6]

Portions of the literature on viscoelasticity in concentrated polymer systems of narrow distribution have been reviewed recently (15, 16, 152, 153). The following discussion concerns three principal characteristics, the viscosity-molecular weight relation, the plateau modulus, and the steady-state compliance. [Pg.48]


See other pages where Viscoelastic reviews is mentioned: [Pg.455]    [Pg.9]    [Pg.640]    [Pg.642]    [Pg.643]    [Pg.76]    [Pg.51]    [Pg.44]    [Pg.126]    [Pg.138]    [Pg.610]    [Pg.77]    [Pg.189]    [Pg.293]    [Pg.30]    [Pg.529]    [Pg.131]    [Pg.174]    [Pg.3]    [Pg.203]    [Pg.205]    [Pg.195]    [Pg.304]    [Pg.239]    [Pg.33]    [Pg.5]    [Pg.6]    [Pg.26]    [Pg.126]    [Pg.126]    [Pg.104]    [Pg.63]    [Pg.245]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



© 2024 chempedia.info