Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl monomers addition polymerization

Vinyl-type addition polymerization. Many olefins and diolefins polymerize under the influence of heat and light or in the presence of catalysts, such as free radicals, carbomum ions or carbamons. Free radicals are particularly efficient in starting polymerization of such important monomers as styrene, vinylchloride, vinylacetate, methylacrylate or acrylonitrile. The first step of this process—the so-called initiation step—consists in the thermal or photochemical dissociation of the catalyst, and results in the formation of two free radicals-. [Pg.1341]

The simplest monomer containing both a diene portion and a dienophilic portion is 2-vinylbutadiene (4, 3). This monomer polymerizes in refluxing cyclohexane presumably by a Diels-Alder reaction to give an insoluble polymer, but the possibility of some vinyl type addition polymerization which would crosslink segments exists. [Pg.49]

Alkenes polymerize cationically by electrophilic addition of the monomer to a growing car-benium ion [8]. Therefore, the monomer must be nucleophilic and capable of stabilizing the resulting positive charge. In addition, the double bond must be the most nucleophilic functionality in the monomer. Some vinyl monomers which polymerize cationically are listed in Eq. (20) in their order of reactivity, which corresponds to the electron-do-... [Pg.136]

Block copolymers have also been produced by the addition of vinyl monomers to occluded or long lived macroradicals. These "pseudo" living macroradicals are produced when vinyl monomers are polymerized in poor solvents (16-18) or in viscous medium (19). [Pg.106]

RAFT polymerization has successfully synthesized a wide range of polymers with controlled molecular weight and low polydispersities (between 1.05 and 1.4 for many monomers). Some monomers capable of polymerizing by RAFT include styrenes, acrylates, acrylamides, and many vinyl monomers. Additionally, the RAFT process allows the synthesis of polymers with... [Pg.630]

The addition polymerization of a vinyl monomer CH2=CHX involves three distinctly different steps. First, the reactive center must be initiated by a suitable reaction to produce a free radical or an anion or cation reaction site. Next, this reactive entity adds consecutive monomer units to propagate the polymer chain. Finally, the active site is capped off, terminating the polymer formation. If one assumes that the polymer produced is truly a high molecular weight substance, the lack of uniformity at the two ends of the chain—arising in one case from the initiation, and in the other from the termination-can be neglected. Accordingly, the overall reaction can be written... [Pg.14]

In cationic polymerization the active species is the ion which is formed by the addition of a proton from the initiator system to a monomer. For vinyl monomers the type of substituents which promote this type of polymerization are those which are electron supplying, like alkyl, 1,1-dialkyl, aryl, and alkoxy. Isobutylene and a-methyl styrene are examples of monomers which have been polymerized via cationic intermediates. [Pg.411]

Uses. Magnesium alkyls are used as polymerization catalysts for alpha-alkenes and dienes, such as the polymerization of ethylene (qv), and in combination with aluminum alkyls and the transition-metal haUdes (16—18). Magnesium alkyls have been used in conjunction with other compounds in the polymerization of alkene oxides, alkene sulfides, acrylonitrile (qv), and polar vinyl monomers (19—22). Magnesium alkyls can be used as a Hquid detergents (23). Also, magnesium alkyls have been used as fuel additives and for the suppression of soot in combustion of residual furnace oil (24). [Pg.340]

Without other alternatives, the carboxyalkyl radicals couple to form dibasic acids HOOC(CH)2 COOH. In addition, the carboxyalkyl radical can be used for other desired radical reactions, eg, hydrogen abstraction, vinyl monomer polymerization, addition of carbon monoxide, etc. The reactions of this radical with chloride and cyanide ions are used to produce amino acids and lactams employed in the manufacture of polyamides, eg, nylon. [Pg.113]

Because no molecule is spHt out, the molecular weight of the repeating unit is identical to that of the monomer. Vinyl monomers, H2C=CHR (Table 2) undergo addition polymerization to form many important and familiar polymers. Diene (two double bonds) monomers also undergo addition polymerization. Normally, one double bond remains, leaving an unsaturated polymer, with one double bond per repeating unit. These double bonds provide sites for subsequent reaction, eg, vulcanization. [Pg.430]

Because of the low reactivity and tendency to undergo chain transfer, small additions of most aHyl compounds retard polymerization of typical vinyl monomers ia free-radical systems (1,3) and may be useful ia controlling molecular weight and stmcture ia polymers. [Pg.80]

Free radical polymerization is a key method used by the polymer industry to produce a wide range of polymers [37]. It is used for the addition polymerization of vinyl monomers including styrene, vinyl acetate, tetrafluoroethylene, methacrylates, acrylates, (meth)acrylonitrile, (meth)acrylamides, etc. in bulk, solution, and aqueous processes. The chemistry is easy to exploit and is tolerant to many functional groups and impurities. [Pg.324]

Kondo maintained his interest in this area, and with his collaborators [62] he recently made detailed investigations on the polymerization and preparation of methyl-4-vinylphenyl-sulfonium bis-(methoxycarbonyl) meth-ylide (Scheme 27) as a new kind of stable vinyl monomer containing the sulfonium ylide structure. It was prepared by heating a solution of 4-methylthiostyrene, dimethyl-diazomalonate, and /-butyl catechol in chlorobenzene at 90°C for 10 h in the presence of anhydride cupric sulfate, and Scheme 27 was polymerized by using a, a -azobisi-sobutyronitrile (AIBN) as the initiator and dimethylsulf-oxide as the solvent at 60°C. The structure of the polymer was confirmed by IR and NMR spectra and elemental analysis. In addition, this monomeric ylide was copolymerized with vinyl monomers such as methyl methacrylate (MMA) and styrene. [Pg.379]

Polyaddition reactions based on isocyanate-terminated poly(ethylene glycol)s and subsequent block copolymerization with styrene monomer were utilized for the impregnation of wood [54]. Hazer [55] prepared block copolymers containing poly(ethylene adipate) and po-ly(peroxy carbamate) by an addition of the respective isocyanate-terminated prepolymers to polyazoesters. By both bulk and solution polymerization and subsequent thermal polymerization in the presence of a vinyl monomer, multiblock copolymers could be formed. [Pg.741]

When an unsymmetrically substituted vinyl monomer such as propylene or styrene is polymerized, the radical addition steps can take place at either end of the double bond to yield either a primary radical intermediate (RCH2-) or a secondary radical (R2CH-). Just as in electrophilic addition reactions, however, we find that only the more highly substituted, secondary radical is formed. [Pg.241]

Vinyl monomers with electron-withdrawing substituents (EWG) can be polymerized by basic (anionic) catalysts. The chain-carrying step is conjugate nucleophilic addition of an anion to the unsaturated monomer (Section 19.13). [Pg.1207]

Synthetic polymers can be classified as either chain-growth polymen or step-growth polymers. Chain-growth polymers are prepared by chain-reaction polymerization of vinyl monomers in the presence of a radical, an anion, or a cation initiator. Radical polymerization is sometimes used, but alkenes such as 2-methylpropene that have electron-donating substituents on the double bond polymerize easily by a cationic route through carbocation intermediates. Similarly, monomers such as methyl -cyanoacrylate that have electron-withdrawing substituents on the double bond polymerize by an anionic, conjugate addition pathway. [Pg.1220]

Although sulfonyl chlorides add readily to unactivated olefins, with vinylic monomers telomeric and/or polymeric products were observed. This difficulty has been overcome by carrying out the addition in the presence of catalytic amounts of CuCl2, so as to provide a general and convenient synthesis of /5-chlorosulfones (Asscher-Vofsi reaction)63. For the copper-catalyzed system a redox-transfer mechanism has been suggested in which the... [Pg.1104]

The difficulties encountered in the early studies of anionic polymerization of methyl methacrylate arose from the unfortunate choice of experimental conditions the use of hydrocarbon solvents and of lithium alkyl initiators. The latter are strong bases. Even at —60 °C they not only initiate the conventional vinyl poly-addition, but attack also the ester group of the monomer yielding a vinyl ketone1, a very reactive monomer, and alkoxide 23). Such a process is described by the scheme. [Pg.97]

The most important example of an addition polymerization is the homopolymerization of a vinyl monomer. The general formula for a vinyl monomer is... [Pg.467]

Thermal Effects in Addition Polymerizations. Table 13.2 shows the heats of reaction (per mole of monomer reacted) and nominal values of the adiabatic temperature rise for complete polymerization. The point made by Table 13.2 is clear even though the calculated values for T dia should not be taken literally for the vinyl addition polymers. All of these pol5Tners have ceiling temperatures where polymerization stops. Some, like polyvinyl chloride, will dramatically decompose, but most will approach equilibrium between monomer and low-molecular-weight polymer. A controlled polymerization yielding high-molecular-weight pol)mier requires substantial removal of heat or operation at low conversions. Both approaches are used industrially. [Pg.468]

Vinyl copolymers contain mers from two or more vinyl monomers. Most common are random copolymers that are formed when the monomers polymerize simultaneously. They can be made by most polymerization mechanisms. Block copolymers are formed by reacting one monomer to completion and then replacing it with a different monomer that continues to add to the same polymer chain. The polymerization of a diblock copolymer stops at this point. Triblock and multiblock polymers continue the polymerization with additional monomer depletion and replenishment steps. The polymer chain must retain its ability to grow throughout the process. This is possible for a few polymerization mechanisms that give living polymers. [Pg.470]

Most addition polymerizations involve vinyl or diene monomers. The opening of a double bond can be catalyzed in several ways. Free-radical polymerization is the most common method for styrenic monomers, whereas coordination metal... [Pg.478]


See other pages where Vinyl monomers addition polymerization is mentioned: [Pg.321]    [Pg.485]    [Pg.60]    [Pg.283]    [Pg.41]    [Pg.9169]    [Pg.111]    [Pg.222]    [Pg.101]    [Pg.226]    [Pg.42]    [Pg.323]    [Pg.497]    [Pg.83]    [Pg.461]    [Pg.466]    [Pg.474]    [Pg.18]    [Pg.483]    [Pg.581]    [Pg.162]    [Pg.163]    [Pg.64]    [Pg.2]    [Pg.26]    [Pg.38]    [Pg.865]   
See also in sourсe #XX -- [ Pg.20 , Pg.391 ]




SEARCH



Addition monomers

Addition polymerization

Additional polymerization

Additives monomers

Additives polymerization

Monomers, polymerization

Polymeric additives

Polymerization vinyl addition

Polymerization vinylic

Vinyl addition

Vinyl monome

Vinyl monomer

Vinyl monomers polymerization

Vinyl polymerization

Vinylic monomers

© 2024 chempedia.info