Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational states spectroscopy

SANS Small-angle neutron scattering [175, 176] Thermal or cold neutrons are scattered elastically or inelastically Incident-Beam Spectroscopy Surface vibrational states, pore size distribution suspension structure... [Pg.316]

RS Raman spectroscopy [210, 211] Scattered monochromatic visible light shows frequency shifts corresponding to vibrational states of surface material Can observe IR-forbidden absorptions low sensitivity... [Pg.318]

Much of the previous section dealt with two-level systems. Real molecules, however, are not two-level systems for many purposes there are only two electronic states that participate, but each of these electronic states has many states corresponding to different quantum levels for vibration and rotation. A coherent femtosecond pulse has a bandwidth which may span many vibrational levels when the pulse impinges on the molecule it excites a coherent superposition of all tliese vibrational states—a vibrational wavepacket. In this section we deal with excitation by one or two femtosecond optical pulses, as well as continuous wave excitation in section A 1.6.4 we will use the concepts developed here to understand nonlinear molecular electronic spectroscopy. [Pg.235]

Quack M 1981 Faraday Discuss. Chem. Soc. 71 309-11, 325-6, 359-64 (Discussion contributions on flexible transition states and vibrationally adiabatic models statistical models in laser chemistry and spectroscopy normal, local, and global vibrational states)... [Pg.1089]

Microwave studies in molecular beams are usually limited to studying the ground vibrational state of the complex. For complexes made up of two molecules (as opposed to atoms), the intennolecular vibrations are usually of relatively low amplitude (though there are some notable exceptions to this, such as the ammonia dimer). Under these circumstances, the methods of classical microwave spectroscopy can be used to detennine the stmcture of the complex. The principal quantities obtained from a microwave spectmm are the rotational constants of the complex, which are conventionally designated A, B and C in decreasing order of magnitude there is one rotational constant 5 for a linear complex, two constants (A and B or B and C) for a complex that is a symmetric top and tliree constants (A, B and C) for an... [Pg.2441]

Most infrared spectroscopy of complexes is carried out in tire mid-infrared, which is tire region in which tire monomers usually absorb infrared radiation. Van der Waals complexes can absorb mid-infrared radiation eitlier witli or without simultaneous excitation of intennolecular bending and stretching vibrations. The mid-infrared bands tliat contain tire most infonnation about intennolecular forces are combination bands, in which tire intennolecular vibrations are excited. Such spectra map out tire vibrational and rotational energy levels associated witli monomers in excited vibrational states and, tluis, provide infonnation on interaction potentials involving excited monomers, which may be slightly different from Arose for ground-state molecules. [Pg.2444]

The vibrational states of a molecule are observed experimentally via infrared and Raman spectroscopy. These techniques can help to determine molecular structure and environment. In order to gain such useful information, it is necessary to determine what vibrational motion corresponds to each peak in the spectrum. This assignment can be quite difficult due to the large number of closely spaced peaks possible even in fairly simple molecules. In order to aid in this assignment, many workers use computer simulations to calculate the vibrational frequencies of molecules. This chapter presents a brief description of the various computational techniques available. [Pg.92]

It is important to realize that electronic spectroscopy provides the fifth method, for heteronuclear diatomic molecules, of obtaining the intemuclear distance in the ground electronic state. The other four arise through the techniques of rotational spectroscopy (microwave, millimetre wave or far-infrared, and Raman) and vibration-rotation spectroscopy (infrared and Raman). In homonuclear diatomics, only the Raman techniques may be used. However, if the molecule is short-lived, as is the case, for example, with CuH and C2, electronic spectroscopy, because of its high sensitivity, is often the only means of determining the ground state intemuclear distance. [Pg.257]

In this chapter, three methods for measuring the frequencies of the vibrations of chemical bonds between atoms in solids are discussed. Two of them, Fourier Transform Infrared Spectroscopy, FTIR, and Raman Spectroscopy, use infrared (IR) radiation as the probe. The third, High-Resolution Electron Enetgy-Loss Spectroscopy, HREELS, uses electron impact. The fourth technique. Nuclear Magnetic Resonance, NMR, is physically unrelated to the other three, involving transitions between different spin states of the atomic nucleus instead of bond vibrational states, but is included here because it provides somewhat similar information on the local bonding arrangement around an atom. [Pg.413]

Infrared spectroscopy is an analytical technique which differentiates molecules on the basis of their vibrational states. [Pg.630]

Conventional MS in the energy domain has contributed a lot to the understanding of the electronic ground state of iron centers in proteins and biomimetic models ([55], and references therein). However, the vibrational properties of these centers, which are thought to be related to their biological function, are much less studied. This is partly due to the fact that the vibrational states of the iron centers are masked by the vibrational states of the protein backbone and thus techniques such as Resonance Raman- or IR-spectroscopy do not provide a clear picture of the vibrational properties of these centers. A special feature of NIS is that it directly reveals the fraction of kinetic energy due to the Fe motion in a particular vibrational mode. [Pg.528]

In summary, NIS provides an excellent tool for the study of the vibrational properties of iron centers in proteins. In spectroscopies like Resonance Raman and IR, the vibrational states of the iron centers are masked by those of the protein backbone. A specific feature of NIS is that it is an isotope-selective technique (e.g., for Fe). Its focus is on the metal-ligand bond stretching and bending vibrations which exhibit the most prominent contributions to the mean square displacement of the metal atom. [Pg.534]

The upper state can also be formed in energetically excited ro-vibrational states. Most photoelectron experiments do not have enough resolution to observe rotational levels, except in rare cases, but vibrational resolution is commonly achieved. Therefore, it is possible to carry out limited vibrational spectroscopy of cations and reactive neutral molecules using this approach. [Pg.217]

Microwave spectroscopy is generally defined as the high-resolution absorption spectroscopy of molecular rotational transitions in the gas phase. Microwave spectroscopy observes the transitions between the quantised rotational sublevels of a given vibrational state in the electronic ground state of free molecules. Molecular... [Pg.101]

Infrared reflectance spectroscopy provides information on the vibrational states in the interphase. It can be interpreted in terms of molecular symmetry, force constants and chemical bond lengths. The intensity of the spectral peaks of the adsorbed molecules is determined both by standard... [Pg.344]

Califano, S., Vibrational States, John Wiley Sous, Chichester (1976). Chamberlain, John, The Principles of Interferometric Spectroscopy, John Wiley Sons, Chichester (1979). [Pg.201]

Vibrational spectroscopy is based on the interaction between light and matter it probes the different vibrational states of the investigated molecules. A number of excellent books describing the principles, instrumentation and applications are available [7,8]. [Pg.529]

In general, all observed intemuclear distances are vibrationally averaged parameters. Due to anharmonicity, the average values will change from one vibrational state to the next and, in a molecular ensemble distributed over several states, they are temperature dependent. All these aspects dictate the need to make statistical definitions of various conceivable, different averages, or structure types. In addition, since the two main tools for quantitative structure determination in the vapor phase—gas electron diffraction and microwave spectroscopy—interact with molecular ensembles in different ways, certain operational definitions are also needed for a precise understanding of experimental structures. [Pg.133]

Fig. 5.1 Sample IJs) curves for various vibrational states of carbon monosulfide, C = S. These curves were calculated2 in accordance with Eq. (5.2), using i )y(r) functions obtained by solving Schrodinger s equation with an experimental potential energy surface derived from molecular spectroscopy. Fig. 5.1 Sample IJs) curves for various vibrational states of carbon monosulfide, C = S. These curves were calculated2 in accordance with Eq. (5.2), using i )y(r) functions obtained by solving Schrodinger s equation with an experimental potential energy surface derived from molecular spectroscopy.

See other pages where Vibrational states spectroscopy is mentioned: [Pg.584]    [Pg.874]    [Pg.1135]    [Pg.1192]    [Pg.1197]    [Pg.1199]    [Pg.1255]    [Pg.518]    [Pg.521]    [Pg.112]    [Pg.521]    [Pg.101]    [Pg.129]    [Pg.336]    [Pg.342]    [Pg.357]    [Pg.71]    [Pg.186]    [Pg.517]    [Pg.575]    [Pg.31]    [Pg.50]    [Pg.347]    [Pg.20]    [Pg.31]    [Pg.501]    [Pg.76]    [Pg.105]    [Pg.746]    [Pg.120]    [Pg.147]   
See also in sourсe #XX -- [ Pg.355 , Pg.382 , Pg.383 , Pg.384 , Pg.385 , Pg.386 , Pg.387 ]




SEARCH



Vibration /vibrations spectroscopy

© 2024 chempedia.info