Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational spectroscopy surface analysis

The major role of TOF-SARS and SARIS is as surface structure analysis teclmiques which are capable of probing the positions of all elements with an accuracy of <0.1 A. They are sensitive to short-range order, i.e. individual interatomic spacings that are <10 A. They provide a direct measure of the interatomic distances in the first and subsurface layers and a measure of surface periodicity in real space. One of its most important applications is the direct determination of hydrogen adsorption sites by recoiling spectrometry [12, 4T ]. Most other surface structure teclmiques do not detect hydrogen, with the possible exception of He atom scattering and vibrational spectroscopy. [Pg.1823]

Analysis of Surface Molecular Composition. Information about the molecular composition of the surface or interface may also be of interest. A variety of methods for elucidating the nature of the molecules that exist on a surface or within an interface exist. Techniques based on vibrational spectroscopy of molecules are the most common and include the electron-based method of high resolution electron energy loss spectroscopy (hreels), and the optical methods of ftir and Raman spectroscopy. These tools are tremendously powerful methods of analysis because not only does a molecule possess vibrational modes which are signatures of that molecule, but the energies of molecular vibrations are extremely sensitive to the chemical environment in which a molecule is found. Thus, these methods direcdy provide information about the chemistry of the surface or interface through the vibrations of molecules contained on the surface or within the interface. [Pg.285]

Among the techniques mentioned previously, XPS has the greatest impact on polymer surface analysis. A major additional source of chemical information from polymers comes from IR and Raman spectroscopy methods, These vibrational data can be obtained from the bulk and the surface region, although the information depth is much greater than with AES, XPS, or ISS. [Pg.518]

The use of vibrational spectroscopy for the qualitative analysis of absorbed surface species is first considered, and a Table is then included which summarises a number of the key features of the various quantitative techniques. We then proceed to summarize these in groups depending not upon the probe used (as in the preceding chapters), but in terms of the signal emitted by the specimen which is used in each identification process. [Pg.203]

In addition to the indirect experimental evidence coming from work function measurements, information about water orientation at metal surfaces is beginning to emerge from recent applications of a number of in situ vibrational spectroscopic techniques. Infrared reflection-absorption spectroscopy, surface-enhanced Raman scattering, and second harmonic generation have been used to investigate the structure of water at different metal surfaces, but the pictures emerging from all these studies are not always consistent, partially because of surface modification and chemical adsorption, which complicate the analysis. [Pg.131]

Since 1905, when Coblentz obtained the first IR spectrum, vibrational spectroscopy has become an important analytical research tool. This technique was then applied to the analysis of adsorbates on well-defined surfaces, subsequently moving towards heterogeneous reaction studies. Terenin and Kasparov (1940) made the first attempt to employ IR in adsorption studies using ammonia adsorbed on a silica aerogel containing dispersed iron. This led to a prediction by Eischens et al. from Beacon Laboratories in 1956 that the IR technique would prove to be extremely important in the study of adsorption and catalysis. For an excellent review article in IR spectroscopy, see Ryczkowski and references therein and for a more recent review with applications, see Topsoe. ... [Pg.198]

Studies by Teplyakov et al. provided the experimental evidence for the formation of the Diels-Alder reaction product at the Si(100)-2 x 1 surface [239,240]. A combination of surface-sensitive techniques was applied to make the assignment, including surface infrared (vibrational) spectroscopy, thermal desorption studies, and synchrotron-based X-ray absorption spectroscopy. Vibrational spectroscopy in particular provides a molecular fingerprint and is useful in identifying bonding and structure in the adsorbed molecules. An analysis of the vibrational spectra of adsorbed butadiene on Si(100)-2 x 1 in which several isotopic forms of butadiene (i.e., some of the H atoms were substituted with D atoms) were compared showed that the majority of butadiene molecules formed the Diels-Alder reaction product at the surface. Very good agreement was also found between the experimental vibrational spectra obtained by Teplyakov et al. [239,240] and frequencies calculated for the Diels-Alder surface adduct by Konecny and Doren [237,238]. [Pg.359]

The TPD experimental technique is alternatively, but less suitably, termed thermal desorption spectroscopy (TDS). It is a very useful complement to vibrational spectroscopy and can be applied to adsorption on single-crystal or finely divided metal surfaces. TPD involves the dynamic analysis, usually by mass spectrometry, of the gases desorbed from the surface as the temperature is raised at a uniform rate, starting from a known state of adsorption. In addition to... [Pg.26]

Refs. [i] Holze R (2008) Surface and interface analysis an electrochemists toolbox. Springer, Berlin [ii] Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, Chichester... [Pg.632]

The shape of the minimum in the surface is experimentally probed by vibrational spectroscopy. It is here that the computations can make direct coimection with experimental information. Formation of the H-bond from a pair of isolated molecules converts three translational and three rotational degrees of freedom of the formerly free pair of molecules into six new vibrations within the complex. The frequencies of these modes are indicative of the functional dependence of the energy upon the corresponding geometrical distortions. But rather than consisting of a simple motion, for example, H-bond stretch, the normal modes are composed of a mixture of symmetry-related atomic motions, complicating their analysis in terms of the simpler motions. In addition to these new intermoleeular modes, the intramolecular vibrations within each of the subunits are perturbed by the formation of the H-bond. The nature of each perturbation opens a window into the effects of the H-bond upon the molecules involved. The intensities of the various vibrations carry valuable information about the electron density within the complex and the perturbations induced by the formation of the H-bond. [Pg.138]

Ex situ IR data are collected on dried, diluted powder films in a low vacuum enviromnent or one purged with a dry gas such as N2. Attenuated total reflectance (ATR)-IR spectroscopy provides surface-sensitive IR measurements and can be used for in situ studies of sorption phenomena. Raman spectroscopy is a related vibrational spectroscopy that provides complimentary information to IR. It can also be used to collect vibrational spectra of aqueous samples. Typical data reduction for vibrational spectra involves subtraction of a background spectmm collected under identical conditions from the raw, averaged sample spectrum. Data analysis usually consists of an examination of changes in peak position and shape and peak fitting (Smith, 1996). These and other spectral parameters are tracked as a function of maaoscopic variables such as pH, adsorption density, and ionic strength. [Pg.32]


See other pages where Vibrational spectroscopy surface analysis is mentioned: [Pg.66]    [Pg.2528]    [Pg.297]    [Pg.418]    [Pg.442]    [Pg.456]    [Pg.366]    [Pg.368]    [Pg.392]    [Pg.394]    [Pg.161]    [Pg.149]    [Pg.425]    [Pg.340]    [Pg.189]    [Pg.23]    [Pg.62]    [Pg.104]    [Pg.152]    [Pg.277]    [Pg.33]    [Pg.44]    [Pg.106]    [Pg.305]    [Pg.536]    [Pg.290]    [Pg.302]    [Pg.133]    [Pg.191]    [Pg.49]    [Pg.452]    [Pg.53]    [Pg.331]    [Pg.350]    [Pg.231]    [Pg.292]    [Pg.166]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Analysis spectroscopy

Surface analysis

Surface analysis spectroscopy

Surface spectroscopy

Surface vibrations

Vibration /vibrations spectroscopy

Vibration analysis

Vibrational analysis

© 2024 chempedia.info